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ABSTRACT

In this paper, we prove the functoriality of the analytic torsion forms
of Bismut and Lott [BLo] with respect to the composition of two sub-
mersions.

0 Introduction

In [BLo], Bismut and Lott extended the famous Ray—Singer analytic torsion [RS1]
from an invariant of a smooth manifold to the family case. Namely, they intro-
duced a real analytic torsion form for a smooth fibration. One of the significant
facts is that the real analytic torsion form enters in a differential form version
of a C*-analog of the Riemann-Roch-Grothendieck theorem for holomorphic
submersions.

The purpose of this paper is to prove the functoriality of the real analytic
torsion form with respect to the composition of two submersions. Let us state
some of our results in detail.

Let W,V,S be smooth manifolds. Let 71: W — V, mo: V — S be smooth
fibrations with compact fibre X,Y. Then 73 = mpyom: W — S is a smooth
fibration with compact fiber Z of dimension n. Let TX,TY,TZ be the relative
tangent bundles. Let (F, V) be a flat complex vector bundle over W. Let hF
be a Hermitian metric on F. Then we have the diagram of smooth fibrations:

X—Z—W
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Let H*(X, Fix) = @i X Hi(X, Fix), H*(Z, F\z), H*(Y, H*(X, F|x)) be the
Z-graded vector bundles over V, S, S whose fibers over a € V, s € S are the
cohomologies H*(X,, Fix,), H*(Zs, F\z,), H*(Ys, H*(X, Fix)) of the sheaf of
locally flat sections of F, F, H(X, Fix) on X,, Z,, Y;. Let VHX.Fix) be the
canonical flat connection on H*(X, Fx).

Let T1H W, THV,T. 3H W be the sub-bundles of TW, TV, TW which are comple-
ments of TX,TY,TZ. Let gT%,¢gTX, ¢TY be metrics on TZ,TX,TY.

Let (Q(X, Fix),d*) be the de Rham complex of smooth sections of A(T*X)@F
over X. By Hodge theory, we can identify H*(X, Fx) with the corresponding
harmonic elements in the de Rham complex (Q(X, Fix),d*). Let hF(X:Fix) pe
the corresponding L2-metric on H *(X, Fix) with respect to gTX hF. In the
same way, we note hfl(%Fiz) pHYH(X.Fix)) the corresponding L? metrics on
H*(Z,Fz), H*(Y,H*(X,Fix)) induced by g7Z,h¥ and g7, pH(X:-Fix),

Let VTX,VTY VTZ be the connections on TX, TY, TZ defined in [B1, Defini-
tion 1.6]. Let THZ = TFWNTZ. Let 7} VTY be the connection on 7 Z induced
by VY. Then oyl = w*VTY @ VX is a connection on TZ = THZ 3 TX.
Let e(TX,VTX),e(TY,VTY), e(TZ,VTZ), e(TZ,°V"?) be the associated rep-
resentatives of the Euler class of TX,TY, TZ, TZ in Chern-Weil theory. Let
eTz,vre, OVTZ) be the Chern—Simons n— 1 forms on W with values in o(TZ),
the orientation bundle of TZ, such that

(0.1) AT 2, VT2 V") = o(T2,°V" ) - e(TZ,VT?).

Let f(V¥,hf) be the closed odd forms on W defined in (1.28), which are the
analogue of the Chern character on the flat vector bundle F.

Let Q° be the vector space of real even forms on S. Let Q%° be the vector
space of real exact even forms on S.

Let T(THEW, gT%, hE), T(THV, gT¥, REXCE) T(THW, gTZ, h¥') be the an-
alytic torsion forms corresponding to my, 7o, 73 defined in [BLo, Definition 3.22).
The form T (THW, gTX, hF) satisfies the following equation:

(0.2)
a7 (THF W, g™, hF) =/ e(TX,VIX)f(VF, hF) — f(WHFLO pHOOF)),
X

For s € S, the Leray spectral sequence (E, s, d,s) (r > 2) [Grot] with respect
to m: Zs — Y, verifies Ey = H(Y, H(X, Fix)). Let h*2 be the metric on E;
induced by RHYH(X.Fix)),

By Proposition 3.1, we know that (E,,d,), (r > 2) is a flat complex of vector
bundles on S. And the de Rham complex Q(Z,, Fz, ), provided with a suitable
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filtration, calculates the Leray spectral sequence. By using these two facts, in
Definition 3.2, we define the form T(E», H(Z, Fz), h*2, RH(Z.Fiz)} on S such that
(0.3)

dT(Es, H(Z, Fiz), kP2 hH(ZFi2)y = f(VF: pFo) — p(0H(ZFz) pHZEi2))

The purpose of this paper is to establish the following result, which we state
as Theorem 3.1,

THEOREM 0.1: The following identity holds in Q°/Q%°,

(0.4) T(THW, gT%, 07y = / e(TY, VYT (THEW, g% hF)
v

+ T(TQHV1 gTY1 hH(X’F'X))
+T(Ey, H(Z, Fz), hF2, hH(ZFiz))

- / (T2, V72,00 ) f(VF | hF).
A

In [Lo], Lott defined a secondary K-group for flat complex Hermitian vector
bundles on a C* manifold. Lott defined also the direct image (secondary index)
in his secondary K-group for a C* fibration with compact fibre, and the real
analytic torsion form is one part of his secondary index. We can consider it as
a C* analogue of Gillet—Soulé’s arithmetic K-Theory in Arakelov goemetry. In
[Bu], Bunke shows that Theorem 0.1 actually implies the functoriality of Lott’s
secondary indices [Lo].

Assume now that S is a point. Then we have a submersion m1: Z = Y of
compact manifolds with fibre X. Let

dim Z

(0.5) AF) = R) (det Hi(Z, F))V',
= dim Z o
MH*(X,Fix)) = ) (det H'(Y, HI (X, Fix))) """
i,5=0

be the determinant of the cohomologies of F, H*(X, F|x). By [KM], we have a
canonical nonzero section o € A" H(X, Fx)) @ A(F).

Let || |Ixax.Fx)> || lIxr) be the Ray-Singer metrics on A(H (X, Fix)),
A(F) associated to the metrics g7¥, hX-Fix) "and ¢TZ ¥ [BZ, Definition 2.2].
Let || ]],\_1(H(X_F,X))®A(F) be the corresponding Ray-Singer metric on

AHH(X,Fix)) © MF). Let T(X, hF) be the Ray-Singer analytic torsion
[RS1, Definition 1.6} on the fibre X associated to the metrics g7, h¥.
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By [BLo, Theorems 2.25 and 3.29], and (1.28), we can reformulate Theorem
0.1,

(0.6) log(“U“A"l(H(X,F\X))®>\(F)):/;e(TYaVTY)IOgT(X,hF)

- % / &(T2, VT2, 00 %) T[(hF) -1V F RF).
VA

If Z is oriented, odd dimensional, and A is a flat metric, let g7% = e?¢T% +
7*gTY. Let T.(Z, h¥') be the Ray-Singer analytic torsion associated to gIZ. In
[D1], [DM], Dai and Melrose have calculated the asymptotics of T.(Z,hF) as
¢ — 0. In [LST], Liick, Schick and Thielmann have generalized it to the case
that F' is unimodular, and that Z is odd or even. In fact, by using [BZ, Theorems
0.1, 0.2}, [Mii}, they show their main result [LST, Theorem 0.2] follows from the
corresponding result on Reidemeister torsion which is essentially a problem of
finite dimensional linear algebra.

So the equation (0.6) extends the results of [DM], [LST], to the general case,
where F' is not necessarily unimodular. Furthermore, we do not use the result
[BZ, Theorem 0.2]. Dai told me that their method also works in this case.

This paper is organized as follows: In Section 1, we recall the construction
of the analytic torsion forms of Bismut and Lott [BLo]. In Section 2, we prove
that the de Rham complex, provided with a suitable filtration, calculates the
Leray spectral sequence. We also give a derivation of Dai’s result on the small
eigenvalues [D]. In Section 3, we state our main result, Theorem 3.1. In Section
4, we state seven intermediate results, whose proofs are delayed to Sections 5-
9. We then prove Theorem 3.1. Sections 5-9 are devoted to the proof of the
intermediate results which were alluded to before.

This paper is a revised version of [Ma3].

In the whole paper, if A is a Zy-graded algebra, and if a,b € A, then we will
note [a, b] as the supercommutator of a,b. And if J € End(A), we denote Tr,(J)
as the supertrace of J [BeGeV, §1.3].
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Professor J.-M. Bismut for his teaching and encouragement. Part of the work
was done while the author was visiting ICTP and IHES. He would like to thank
Professors M. 8. Narasimhan and J. P. Bourguignon and these institutes for
their hospitality. Finally, he thanks the referee for careful reading and helpful
comments.
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1. Analytic torsion forms

In this Section, we recall the construction of analytic torsion forms [BLo].

This Section is organized as follows. In Section 1.1, we introduce the super-
connection of Bismut-Lott. In Section 1.2, we recall the construction of the flat
connection on the cohomology bundle of fibers. In Section 1.3, we construct the
analytic torsion forms.

1.1. SUPERCONNECTION OF BisMUT-LOTT. Let 7: W — S be a smooth fiber
bundle with compact fiber Z of dimension n. Let TZ be the vertical tangent
bundle of the fiber bundle, and let T*Z be its dual bundle. Let F be a flat
complex vector bundle on W and let V¥ denote its flat connection.

Let THW be a sub-bundle of TW such that

(1.1) TW=TiWwaTZ.

Let PTZ denote the projection from TW to TZ. If U € TS, let U be the lift
of U in THW, so that m,U¥ = U.

Let E = @, E' be the smooth infinite-dimensional Z-graded vector bundle
over S whose fiber over s € S is C*°(Z,, (A(T*Z) ® F)z,). That is

(1.2) C®(S,EY) = C®(W,A(T*Z) ® F).

Definition 1.1: For s € C*(S; E) and U a vector field on S, then the Lie differ-
ential Lya acts on C°(S, F). Set

(1.3) V[EIS = LUHS.

Then V¥ is a connection on E which preserves the Z-grading.
If U1, Uy are vector fields on S, put

(1.4) T(Uy,Uy) = —PTZ[UE UH] e c>(W,TZ).

We denote it € Q2(S,Hom(E®, E*~1)) to be the 2-form on S which, to vector
fields Uy, U, on S, assigns the operation of interior multiplication by T'(Uy, Us)
on E. Let d? be exterior differentiation along fibers. We consider dZ to be
an element of C*(S, Hom(E®, E*t1)). The exterior differentiation operator d",
acting on C*®°(W, A(T*W) © F), has degree 1 and satisfies (d")2 = 0. By [BLo,
Proposition 3.4], we have

(1.5) dV =d* +VF +ir.
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So dV is a flat superconnection of total degree 1 on E. We have
(L.6) (d®)?* =0, [VF,d?]=0.

Let g7% be a metric on TZ. Let h¥ be a Hermitian metric on F. Let VF* be
the adjoint of V¥ with respect to h.

Definition 1.2: Let w(F,h¥) be the 1-form on W taking values in self-adjoint
endomorphisms of F,

(1.7) w(F,hF) = (hF)"IVFAF.
Let VF* be the connection on F,
1 1
(1.8) vEe = yF 4 Sw(F, hF) = 5(vF + V.

Let o(TZ) be the orientation bundle of T'Z, a flat real line bundle on W. Let
dvz be the Riemannian volume form on fibers Z associated to the metric g7%.
(Here dvz is viewed as a section of A™(T*Z) ® o(TZ).) Let { )a(r-z)oF be the
metric on A(T*Z) @ F induced by g7%, h¥. Let  be the fiberwise Hodge duality
operator associated to g7Z. Then E acquires a Hermitian metric hZ such that
for a,0' € C*(S,FE) and s € S,

(1.9) (a,a)e =/Z (aAxa')p =/Z (o, &)\ 2y F BV, -

Let VE*, d2*, (dW)*, (i7)* be the formal adjoint of VE, d?, dW, ir with
respect to the scalar product (,),z. Set

(1 10) DZ _ dZ +dZ*, vE,t& — %(VB _}_vE*),

w(E, hF) = vE* — V¥,

Let Nz be the number operator of E, i.e., acts by multiplication by k on
C®(W,A¥(T*Z) ® F). For u > 0, set

C{‘ — ,uNZ/Qqu—Nz/Z‘ C{Z — u—NZ/Z(dW)*uNZ/Q,

(1'11) 1 " 1w '
Cu=5(CLt+Cl) Du=5(Cl~Cl).

Then C” is the adjoint of C!, with respect to h¥; C, is a superconnection and
D, is an odd element of Q(S,End(FE)), and

(1.12) C?=_-D2.
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In calculations we will sometimes assume that S has a Riemannian metric
g75 and W has the Riemannian metric g7 = ¢7¢ @ 7*¢T*, although all final
results will be independent of g7°. Let VIW, VTS denote the corresponding
Levi-Civita connections on W, S. Put V72 = PTZyTW 4 connection on TZ.
As shown in [B1, Theorem 1.9], VT# is independent of the choice of g7°. Then
0V = VTZ @ VTS is also a connection on TW. Let S = VIW —0V. By [BI,
Theorem 1.9], (S(.).,.),rw is a tensor independent of gTs.

Let g, be a base of T'S; set g the dual base of T*S. Let e; be an orthonormal
base of (T'Z,g7%). We define a horizontal 1-form k on W by

(1.13) k(ga) = = Y (S(ei)eir ga) -
For X € TZ, let X* € T*Z correspond to X by the metric g7%. Set
(1.14) e(X)=X"AN—ix, ©¢(X)=X*A+ix.
Set
1
i a B
(1.15) o(T) = 2};g A 97 e(T(ga: 95))-
@,

Let VAT"2) be the connection on A(T*Z) induced by VT2, Let VT2@Fu pe
the counection on A(T*Z) @ F induced by VAT 2) vFt Then by [BLo, (3.36),
(3‘37)]3

u 1’\
(1.16) D7 = c(e;)VE7OF® — §c(ej)w(F, hE)(e;),
u (84 12 1
vir=g (Vng@)“ + 5k<ga>) ,
W(B,RP) = g% ((S(ga)es, e5) cles)eles) + w(F, hT)(ga)) -
By [BLo, Proposition 3.9}, we get

VU oz E i
1.17 C,=-—D Vot — ——(T).
( ) u 2 + 2\/776’( )

Remark that in [Zh, §2¢)], Zhang observed that we can obtain this Bismut-
Lott superconnection from his sub-signature operator in the same way as the
Bismut superconnection is obtained from the Dirac operator.

Let RTZ be the curvature of VTZ. Set

~ 1 N
(1.18) RTZ = n <ez-,RTZej>gTZ c(e;)cle;).
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1.2. THE FLAT CONNECTION ON THE COHOMOLOGY BUNDLE OF THE FIBERS.
Let H*(Z, Fiz) = @5 ? H'(Z, Fyz) be the Z-graded vector bundle over S whose
fiber over s € S is the cohomology H(Z,, F)z,) of the sheaf of locally flat sections
of F on Z,. By [BLo, §3 (f)], the flat superconnection d" induces a canonical
flat connection VH#(ZFi2) on H*(Z, F|z) which preserves the Z-grading. The
connection VH(Z:Fiz) does not depend on the choice of TH M, and is the canonical
flat connection on H*(Z, Fz).
By Hodge theory, there is an isomorphism

(1.19) H*(Z,,F|z,) ~ Ker(D?).
Then there is an isomorphism of smooth Z-graded vector bundles on S
(1.20) H*(Z,Fz) ~ Ker(D?).

Clearly Ker(D?) inherits a metric from the scalar product { ), . Let h#(%:F1z)
be the corresponding metric on H*(Z, Fz).

Let P be the orthogonal projection operator from E on Ker(D?) with respect
to the Hermitian product (1.9). Set P+ = 1—P. Let (VH(ZFi2))* be the adjoint
of VH(Z.Fiz) with respect to the Hermitian metric h¥(Z:Fiz), Put

(1‘21) VH(Z,F‘|Z),u — % (VH(Z,F|Z) + (VH(Z,F|Z))*) ,

a Hermitian connection on H(Z, Fz).
The following result is established in [BLo, Proposition 3.14].

ProPOSITION 1.1: The foilowing identities hold:
VH(ZFz) — pyE, (VH(ZJ:"Z))* - pvEs,

(1.22)
w (H(Z, Fz), hH(Z’F‘Z)) — Pw(E, hE)P.

1.3. ANALYTIC TORSION FORMS. Let Pf: so(m) — R denote the Pfaffian. Set

RTZ

(1.23) e(TZ,V7Z) = Pf[?].

Then e(TZ,V7%) is an o(T Z) value closed n-form on W which represents the Eu-
ler class e(TZ) of TZ, lying in H™(W,o(TZ)) [BZ, (3.17)]. Of course, e(TZ, VT%)
=0, if n is odd. Put

n n

(124)  x(2) =Y _(-)"kH'(Z,R), X'(Z,F)=) (~1)'irkH'(Z, F).

i=0 =0
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Then y(Z) is the Euler characteristic number of TZ. And x(Z), x'(Z,F) are
locally constant functions on S.

Let Q(S), (W) denote the space of smooth sections of A(T*S), A(T*W).
Let ¢: QW) — QW) (resp. £2(S) — Q(S)) be the linear map such that for all
homogeneous w € QW) (resp. Q(S}),

(1.25) ow = (2mi)~(deew)/2)

Definition 1.3: Let QW be the vector space of real even forms on W. Let QW0
be the vector space of real exact even forms on W.

For a € C, put
(1.26) f(a) = aexp(a?), g(a) = (1 — 2a)exp(—a).
We have
(1.27) f'(a) = (1 + 2a*)exp(a?).
Put
(138)  F(VFA) = (i) e S (Ge(F )] € (W),

Then f(VF,h¥) is closed and its de Rham cohomology class is independent of
RE.

For any u > 0, the operator D, is a fiberwise-elliptic differential operator.
Then f(D,) is a fiberwise trace class operator. For u > 0, put
(1.29)  f(C,, k") = (2im) /% Try[£(Du))],

N
PNCLE) = o T, [Z27(DL)]
dim Z
f(vH(Z’FIZ),hH(Z'F|Z)) — Z (_1)Qf(qu(Z,F|Z)’hH(Z~F|Z)).
q=0

The following results are proved in [BLo, Theorem 3.16],

THEOREM 1.1: For any u > 0, the form f(C!,hF) is real, odd, and closed. Its
de Rham cohomology class is independent of u, THW,¢7% and h¥. Asu — 0,

1By _ [ [ e(TZ,VT2)f(VE,RF) + O(u) if dim Z is even,
(1.30)  f(Cy,h") {0(\/5) if dim Z is odd.

Asu — 400
(1.31) F(ChF) = f(VHZR2) pHER2)) L 01/ /).
The following results are proved in [BLo, Theorems 3.20 and 3.21],
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THEOREM 1.2: For any u > 0, the form f*(C!,hF) is real and even. Moreover,

_6_ ! E _l A ! FE
(1.32) gy (Cuh™) = —df*(Cy, h7).
Asu—0,
1 . . . .

A BBy} 3dim Z1k(F)x(Z) + O(u) ifdimZ is even,
(133 JHGRT {0(\/17) if dim Z is odd.
Asu— 400

1

(1.34) FHCLRE) = 5X'(Z,F) + 0(1/v/u).

Definition 1.4: The analytic torsion form T(THW, g4, hF) € Q(S) is given by

+o0
TW.gT2n) = - [ [17(Clh®) - X2, F)f )
0
1 1, /i du
(1.35) (Zdlerk(F)x(Z) X2 F))f ( : )] =,
The following results are proved in [BLo, Theorem 3.23].

THEOREM 1.3: The form T(THW, gT% hF) is even and real. Moreover,
(1.36)

ATTIW, G 0F) = [ (29T (VFF) = f(THERD pHERD)
zZ

2. Leray spectral sequence

This Section is organized as follows. In Section 2.1, we prove that the de Rham
complex, provided with a suitable filtration, calculates the Leray spectral se-
quence. In Section 2.2, by following [BerB, §6], we give a derivation of Dai’s
result on the small eigenvalues [D].

2.1. DE RHAM COMPLEX. Let m: Z — Y be a fibration of compact manifolds
with compact fibre X. Let F' be a flat complex vector bundle on Z.
As in [BerB, (1.3)], [GrH, p. 464], let

(2.1) A(T*Z) = FY(A(T*Z)) > FY(A(T*Z)) D --- D FImY+(A(T*Z)) = {0}

be the standard filtration of A(T*Z). In fact FPAY(T*Z) are the forms which can
be written as a finite sum of forms of the shape w A 7* for w € AT ¥(T*Z), n €
AR(T*Y) for some k > p. The filtration (2.1) induces a corresponding filtration
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of the complex ((Z, F), d¥) such that FPQ(Z,F) = C®(Z, FPA(T*Z) @ F). We
also get a corresponding filtration on H*(Z, F). Set

FPH*(Z,F) oy
P . — L} ° — P 3 R
(22) G HY(Z.F) = F5rre s 7y ) Gr* H*(Z, F) g}o GrP H*(Z, F)

For b € Y, let (X5, F|x,),d”) be the relative de Rham complex of smooth
sections of (A(T*X)© F)x,. The Q(Xy, Fix,)'s will be considered as the fibers of
an infinite dimensional vector bundle over Y, whose smooth sections are identified
with the smooth sections of A(T*X) © F on Z. Let Q*(Y,Q*(X, Fix)) be the
vector space of smooth sections of A(T*Y) @ Q*(X, Fix) on Y. Then we have

(2.3) Q°(Y,Q°(X, Fix)) ~ Q°*(Z, F).

Let (E:,d,) be the spectral sequence associated to the filtration (2.1) on the
filtered complex (Q(Z, F),dF) [GrH, §3.5]. Then, as in [BerB, §1 (a)], we get

(2.4) (Eq*,do) = (Q°(Y, (X, Fix)),d¥),
(Ey®,di) = (Q°(Y, H(X,F|x)),d"),
ED? = HP(Y, HY(X, Fix)).

And E, is a finite dimensional Z-graded vector space. More generally, for any
r > 0, Ery; is the cohomology of the complex (E,,d.). And for r > dim Z,

(2.5) (EX*,d.)=(Gr* H*(Z,F),0).
By [Grot, Theorem 3.7.3], there is a functor of the Leray spectral sequence
associated to the fibration m: Z — Y.
THEOREM 2.1: (E,,d;) (r > 2) calculates the Leray spectral sequence.
Proof:  Let Dy (Z) be the sheaf of C* sections of A(T*Z) on Z. Then D,

is R-flat. Following the proof of [Ma2, §2(a)], by exchanging anti-holomorphic
cotangent bundle by cotangent bundle in our context, we get Theorem 2.1. ]

2.2. SMALL EIGENVALUES. In this part, we fix the sub-bundle T#Z of TZ as
n (1.1). Let T} be the tensor defined in (1.4) for m;: Z — Y. Let Nx be the
number operator on (X, Fx). Let VS{X:Fix) be the connection on Q(X, Fix)
as in {1.3). Set

(2.6) df = v Ex) - gZ = TNxgZ=Nx,
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Let ¢7%,g”Y be metrics on TX,TY. Let { ), be the product on Q(Z, F)
defined in (1.9) with respect to ¢7X @ 71gTY, h¥ on TZ, F. Let d%*, d%*,d**,
dH*,i}l be the formal adjoints of d%,dz,dx , dH,le with respect to ( ), on
QZ,F). Let {fi} be an orthonormal basis of (TY,gT"), and {f'} be its dual
basis. Then

, 1 . "
(2.7) i, = §ka/\f’ ATy (g gy By = Zm Nig A (Ta(fes f0))*
ol

Definition 2.1: Set
(2.8) DX =dX* 44X, DH =gH* 4 4.

Now, we define a sequence of Hermitian subspaces E. of E = Q(Z,F), E =
E{DE{D---DE] D> such that

(2.9) (Ey,dy) = (Ey,dy).
By (2.3) and (2.4), set
(2.10) Ey=FEy=E

Suppose that we have constructed E., (r' < r). As E/ ~ E,, the operator d, acts
on E.. Let d* be the adjoint of d, with respect to the metric on E]. Set

(2.11) D, =d,+d;, E. ., =KerD,.

Then E, , C E;, and E; , inherits a Hermitian product on E;. Let p, be the
orthogonal projection from E on E. By Hodge theory,

(2.12) E:.+1 = Fopgy.

The following result first appeared in [B3]. This is an analogue of [BerB,
Theorem 6.1].

PRrROPOSITION 2.1: For r € N, E. splits as an orthogonal direct sum E| =
®p o ErPY, with EIP'? C EB?, so that under the identification (E., d,) ~ (E,,d,),
we have E!P"? ~ EP9. For anyr € N
(2.13)
E. = {s0 € QZ, F), there exist s1,...,s,_1 € YZ, F), such that
DXSO =0, DHS() -+ DX81 =0, (i’]"1 + 2;11 )80 + DH81 + DZSQ =0,
. (i, + 43, )sr—3 + D" s,_o + D?s,_1 = 0}.
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If sq € E., then

(2.14) Dyso = pr (D" 5,2y + (iny + 1, )sr—2).-

Proof: The proof is essentially the same as in [BerB, Theorem 6.1]. The reader
can easily prove it by proceeding as in [BerB, Theorem 6.1]. |

In the sequence, we will identify E,. as a subspace of E, E=F¢ D> FE; D ---D
E,. D ... Let p, be the orthogonal projection from E on E,. Set p;- =1 — p,.
For T > 0, set

) 1
(2.15) gr7 =m"g"" @ g .

Let DZ be the operator defined in (1.10) with respect to g%%, h¥". Set
1

(2.16) AP = 5 (df + d7").

Then by (1.5),

_ 1 1. .
217) A —TNxpZp-Nx o 40 E(TDX +D 4 =ir, +i7,)).
By proceeding as in [BerB, Theorem 6.5], we get

THEOREM 2.2: Foranyr > 2, A € C,Im(A) # 0, forany s € Ey, when T — +o0,

|
‘Dr) lprs-

(2.18) A=T"1AD) 15 5 p (A - 5

As in [BerB, §6(d)], it follows from Theorem 2.2 that for r > 2, the eigenvalues
of A? ) which are O(1/T71) can be put in one to one correspondence with the
corresponding eigenvalues of %Dr.

3. Functoriality of the analytic torsion form

In this Section, we state our main result.

This Section is organized as follows. In Section 3.1, we define some torsion
forms associated to a complex of flat vector bundles. In Section 3.2, we announce
our principal Theorem.

We use the notation of Sections 1 and 2.

3.1. TORSION FORM OF A FLAT COMPLEX. Let W be a C® manifold. Let

(3.1) (B,v):0E° S5 FE' S ... 35 EM 50
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be a flat complex of complex vector bundles on W. That is, VZ = D, VE' i
a flat connection on E = @, F* and v is a flat chain map, where

(3.2) (VEYy =0, +*=0, VBv=0.
Put
(3.3) A =v+VE,

Then A’ is a flat superconnnection of total degree 1. By [BLo, §2(a)], the coho-
mology H(E,v) of the complex is a vector bundle on W, and let VH(E:?) be the
flat connection on H(E,v) induced by VZ.

Let F* = v(E*"!),G* = Ker(vjg:). Then F?, G* are flat complex vector bundles
on W. We have the following exact sequence of flat vector bundles on W:

(34) 0-G -E SF* 50, 0 F =G — HY(E,v) = 0.

Let hZ = @ hF', b be Hermitian metrics on E = @ E*, H(E,v). Let hf",
hG" be the metrics on F?, G* induced by hE'. Set

n

(3.5) FOVE,RE) = ST (-1 f(VE' hEY),
=0
FOHED By = 3 (1) (0 E) M),
=0

Let T(A’,hE") (resp. T(A’,hGi), T(A’,hF)) be the torsion form defined in
[BLo, Definition 2.20] associated to the first line of (3.4) (resp. the second line of
(3.4), (3.1)).

We will say that the flat Hermitian complex (E, A’, k¥, h¥) splits if there exist
flat Hermitian vector bundles (F?, V', hF") such that (E,v) is the complex
0= FOaH % FOg Flg HY(E,v) 5 F' ¢ F2 & H(E,v) —

Lty Frlg BB w) RS FRl g HY(E, ) — 0.
Andfor0<i<n, E' = F""'@ F*® H{(E,v) (F~' = F" = 0) is equipped with
the metric A% = hF" 7" @ BF" @ AH'.

LEMMA 3.1: Let T'(A’, hE, hH) be a real even form on W, verifying the following
conditions:
(a) The following identity holds,

(3.6) dT'(A', hE R = F(VE hE) — f(VHEY) pH),
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(b) If W' is a smooth manifold and o: W' — W is a smooth map, then
(3.7) T'(o* A", a*hE o* ) = o*T' (A, hE hH).

(c) If (E, A’, hE hH) splits, then T'(A’, hE) = 0.
(d) The form T'(A’, k¥, hH) depends smoothly on A’ and hE.
Then

(3.8) T'(A',hE hH) = Z(_ni(T(A', hEY + T(A, hG")) in QW JQWP.
1=0

Proof: By proceeding as in the proof of [BLo, Theorem Al.2], we get (3.8).

1

By Lemma 3.1, we get
(39)  T(A',hE)= Z(—W(T(A’, hEY + T(4, hGi)) in QW QW0
i=0
Let (E, VE) be a flat complex vector bundle on W. Let 0C E® C --- C E™ =
E be a filtration of E such that VE(E?) C Ei. Let Gr' E = E*/E*~'. Then we
have a flat complex of complex vector bundles:

(3.10) Fho-E S EH S Gr E 0.

Let hE, R9E = ¢, hGr'E be Hermitian metrics on E, GrE = @, Gr* E. Let hE'
be the metric on E° induced by hE. Let hF' = hE' ™ @ hE" & hCF be the metric
on Fi = B~V @ E' ® Gr'E. Let T(v+ VF',hF") be the form on W defined by
[BLo, Definition 2.20] associated to (3.10).

Definition 3.1: The torsion form of the filtered flat complex vector bundle F is
defined by

n—1
(3.11) T(E,GrE,h® h%F) = 3" T(v+ VF n").

i=0
3.2. FUNCTORIALITY OF ANALYTIC TORSION FORM. Let W,V,S be smooth
manifolds. Let m1: W — V, m3: V — § be smooth fibrations of manifolds with
compact fibre X,Y. Then w3 = myom: W — S is a smooth fibration with
compact fiber Z with dim Z = n. Let (F,VF) be a flat complex vector bundle
over W. Then we have the diagram of smooth fibrations:

X—Z—W

SN

Y —V——5§
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Let H*(X, Fix) = @i H'(X, Fix), H*(Z, Fiz), H* (Y, H*(X, Fix)) be the
Z-graded vector bundles over V, S, 5 whose fibers over a € V, s € S are the
cohomologies H*(X,, Fix,), H*(Z,, Fz,), H*(Ys, H*(X,F|x)) of the sheaf of
locally flat sections of F', F', H(X, Fix) on X,, Z,, Ys.

Let THW,THV,THW be sub-bundles of TW,TV,TW with respect to
w1, 72, g as in (1.1). Let E be the smooth infinite-dimensional Z-graded vector
bundle over S whose fiber over s € S is C*°(Z,, (AM(T*Z) ® F))z,). For s € S, let
(Ey.s,dr ) be the Leray spectral sequence with respect to my: Z; — Y5, F.

PRroOPOSITION 3.1: There are flat complex vector bundles EPY (r > 2,p,q € N),
and d,: EP? — EP~79%1=" such that the fiber of complex (E, = @,  EP?,d;)
over s € S is the Leray spectral sequence (E, = @, , E}:d, d\).

Proof: By Proposition 1.1, dV is a superconnection on E, and d" FPE C FPE;
here FPE is the filtration in Section 2.1.

At first, E5? = HP(Y, H(X, Fix))(p,q > 0) are flat vector bundles on S. If
EP (p,q € N,r > 2) are flat vector bundles, then d"V induces a flat supercon-
nection on E,, and E,.1 is the cohomology of (E,,d,). By [BLo, §2(a)], EX:,
are flat vector bundles on S. Now by recurrence, the proof of our Proposition is
completed. |

By [BLo, §2(a)], there is also a canonical connection VE- = @p’q VEX? on
E, =@, ,EP? induced by dv.

Let gTZ, gTX gTY be metrics on TZ, TX,TY. Let h¥ be a Hermitian metric
on F.

Let RH(XFix) pH(ZFiz) pHY.H(X.Fix) be the L%-metrics on H*(X, Fix),
H*(Z,Fz), H*(Y,H*(X,Fx)) with respect to gTX nF; ¢TZ AP and
gTY hHOGFX) defined in Section 1.2.

Let VTX VTY §TZ be the connections on (TX, g7X), (TY,¢TY), (TZ,¢7%)
defined in Section 1.1. Let THZ = TEW N TZ. Let 7;VTY be the connection
on THZ ~ mTY induced by VTY. Then °V'7 = 71VTY @ VTX is a con-
nection on TZ = THZ & TX which preserves the metric n3g7" @& g7X. Let
&(T2,9v7Z °V" %) be the Chern-Simons n — 1 forms on Z with values in o(T'Z)
such that

(3.12) de(T7, VT2,V %) = ¢(12,°V"?) - (T2, V7).

Let T(THW, g7, hF), T(THV, gTY , hRHXE) T(THW, gTZ, hF) be the an-
alytic torsion forms corresponding to w1, 7, w3. Let hE2 be the metric on E,
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induced by RHYHXFix))  Tet pEr (r > 3) be the L? metric on E, as in Section
2.2. Set

(3.13) T(H(Z Ez), Eeo, hH(Z:F12) pEocy

dim Z
= Y (“U*T(HH(Z, Fiz), @prqmi B2, W@ F2) pPe),
k=0

Recall that for r > 2, d, is induced by d4. By (1.6), d, + VE is a flat
superconnection of total degree 1 on Ej.

Definition 3.2: Set

3.14) T(E., H(Z, Fz), hE2, hHEZF2)y = N7 1(d, + VE pEr pEra
|
’(‘:2

— T(H(Z,Fz), Eo, h1(ZF12) pFe),

In fact, by [BLo, Theorem 2.24], T(.,.) € @°/Q%° doesn’t depend on the choice
of hEr (r > 3) on E,.
The purpose of this paper is to establish the following result,

THEOREM 3.1: The following identity holds in Q% /Q°°,

(3.15) T(THEW,¢"% hF) = / e(TY, VI YT(THEW, gTX, 1Y)
Y
+T(T'V. g™ RHEN) + T(By, H(Z, Fiz), hP* hH(EF2)
- / HTZ,97Z 09 4\ F(VF BF).
Z

Remark 3.1: By [BLo, Theorem 3.24], to prove Theorem 3.1, we only need to
prove it for a particular choice of THW, TH#V, THW, and gT%, g7X, g™, So we
may, and we will, suppose that

(3.16) THW c THW, 7% = ¢TX @ r3g™Y.

4. A proof of Theorem 3.1

In this Section, we prove our main result, stated as Theorem 3.1, when g7, THw
are given by (3.16).

This Section is organized as follows. In Section 4.1, we introduce a 1-form on
R; x R}. In Section 4.2, we state seven intermediate results which we need for
the proof of Theorem 3.1, whose proofs are delayed to Sections 5-9. In Section
4.3, we prove Theorem 3.1.
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Here, we use the assumptions and notation of Sections 1 and 3.2. Recall that
f, g are the functions defined in (1.26). Recall also [a, b] is the supercommutator
of a,b.

4.1. A FUNDAMENTAL 1-FORM. Recall that THZ = THW NTZ. Then we
have the identification of smooth vector bundles over W,

(4.1) TZ~TX®&THZ, THZ~nriTY.

This identification determines an identification of Z-graded bundles of algebra
(4.2) AT*Z) = A(T*Y)RA(T*X).

Let Nx, Ny, Nz be the number operators on A{T*X), A(T*Y), A(T*Z). Then
Nx, Ny act naturally on A(T*Z). Of course, Nz = Nx + Ny.

Definition 4.1: For T > 1, set

1 .
(4.3) 91% = 3 —g X entg™.

Let hE = (,); be the scalar product on E = Q(Z, F) associated to g+Z, h¥
defined as in (1.9). Let C3, 1, C; 3 w1 O3, D3, 7, VE, d%4*, (i1,)%, *r be the
operators defined in Section 1.1 with respect to (s, {,)y). Let T1, T2, T3 be the
tensors defined in (1.4) with respect to (my, THW), (me, THV), (73, TEW).

Definition 4.2: Let a1 be the 1-form with values in Q% on R, xR,

du 1 _, 9%
(44)  our = S2pTr, [N2f (Dagar)| +dTo T, [5 47" G f (Daan,r)]-
LEMMA 4.1: We have
15 _1 0% 0
(45) aTC3 u, T = [03 u,Ts* Tl oT ] a_TCé,u,T =0

Proof: By Definition, for sy, s, € C*(S, F), we have

(4.6) <V¥*81,82>T = <31,VE52>T.

Now, we differentiate (4.6) in the variable T'; we get

0 _10%1 _10*1
(4.7) <3TVT 31,52>T+< Tl 5T VT 81,32>T = < Tl aT —S1, VE5‘2>T.

So we obtain

_13*7’]

(4.8) 9 g [ o S

or
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In the same way, we have

0 _ _10x7 P 1 0%
(4.9) 8Td = [dT sk dT] ﬁ(sz)T = {(lTa)T7 *7 8T]
By (1.11), (4.8) and (4.9), we get (4.5). |

THEOREM 4.1: We have the following identity,

) _10%1
dutonr = = dudTo 2 [dTe, [Nzg(~D3 o 1+ HCY o 7 S0 )]
~1 O%r
(4.10) +dTr, ([0 7o Nalg(—D3 o r + 157" S0}

Proof: By (1.11) and (4.5), we know that

By using (4.5), we get

1]
= Tty [N/ (D3a1)|
_In [Nzg(~D2 o — b[D32 9 Dy ])]
ab 8 3,u2,T 3,u2,Ts am 8T 3,u2,T b=0
19} 0
=3k Trs [Nzg(“D?Q,,uZ.T + b(C3 2 1 T éﬁu"’,T])] o

_—i , 2 8 1
B BbTrs [[C3u2 - Nzlg(= D3u2T+b8TC‘°"“2’T)]b=0

7]
(4.11) 32,7 Nzg( -D2 uzT+baTC3u2 T)]]

b.._.

T ar

_1 O*r
Cllilu2 T* 3u2T’NZ] ( D§u2T+b T1 oT )]:‘

Trs[
{ 52,7+ [Ca 02 1, Nz]lg(— D3,u2,T+b 7! a*T)]
n |
{ 32,1 V29 D2u2T+baT03u2T)]]

b=0
Moreover, by (1.5) and (1.11), we know that

0

0
[C3u2,7: Nz] = B Ll’y,u2.T’ [C:'s’uz 7 Nz) = L C 3,u2,T"

From (1.11) and the above equation, we get

o
[Cé,uz,T’ [Cg,u2,T’ NZ]] - [C’£l<ll,u2,T7 [Cili,u2,T’ NZ]] = 8 D3 u2, T
[Clli,uz.T’ [ Lli,,u2,T7 NZ]] + [Cél,u2,T' [Cé,uz,T’ NZ]] = —[DS.uz,T9 NZ]

(4.12)
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By (4.3), we know [Nz, +7'2Z] = 0. By (1.26) and (4.12),

10, (G 1 Ch i Nallg(= D3 g + 471 22T
L ) IO )
013~ (208 Dbt 2]
= 1 [ TNy gD o )]
+ %uTrs [ *r! 88*; ;u (—D3 T)]
- %T"s [Nz, 5183TT]g( a2 T)] + %u%rﬁ [ T ?‘9*7?9( Dg*“Z*T)}
1 0 1 O*r

=§u%Tr [ *p 9T —9(— Dg,u%T)]‘

By (1.11) and D3 42 7 is an element of Q(S, End(E)), we know that
1" / 2 _1 Oxr
Tr, (€4 1{Cho 1+ Nalg (= D3 o 1 + b 47" 0]

_1 O%
=d Trs [[szz TﬁNZ]g( 3u2T+b T1 3;)]
0

57t 2]

_10%
:d’I\rs [NZg(_D.B,uz,T + b[Cg’uZ‘T5 *Tl a;])]

Trs [[C:;,uz,T» Nzg(- D3 Y

By (4.11) and (4.13), we get Theorem 4.1. ]

Take ¢, A, T,0< e <1< A< 400,1 £Tp < +o0. Let I' =T'¢ 41, be the
oriented contour in R} x R}

Fp]
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The contour I' consists of four oriented pieces I'y,...,['s indicated above. Also
T bounds an oriented rectangular domain A’. For 1 < k < 4, set

(4.14) L= / a.
Tk
Put
(4.15)
. 1 9 197
0 = ~(ami) ™ [ S T [Nag(-Dh o g + MG 7 G |

- a*T
+ Trs [[Cil%,zﬂ,Tw NZ]g(—Dg,uz,T + b *Tl a—T)] }bzodUdT'

THEOREM 4.2: The following identity holds,

4

(4.16) 1) =de.
k=1

Proof: This follows from Theorem 4.1. [ |

4.2. SEVEN INTERMEDIATE RESULTS. Now, we state without proof seven in-
termediate results, which will play an essential role in the proof of Theorem 3.1.
The proofs of these results are delayed to Sections 5-9.

In the sequence, we will assume for simplicity that S is compact. If S is
non-compact, the various constants C > 0 depend explicitly on the compact set
K C S on which the given estimate is valid.

Let Z = Uf=1 Z; be the decomposition of the connected components of Z.
Let Y; = m(Z;). Let x(X),x(Yi), x(Z:),x(Z) be Euler numbers of the fibers
X.Y;, Z;, Z. Then x(X) is locally constant function on ¥. We have

(4.17) x(Z;) = x(X)x(Y3).

In the following, we will also write x(Z) = >, x(X)x(V3) as x(X)x(Y), etc.
Let e;, fi be orthonormal bases of (TX,g7X),(TY,¢TY). Then {er,} =
{Te;, fi} is the orthonormal base of (T Z, g%4). By [BZ, Proposition 4.15], (1.14),
_1 0% 1 _4, 0 .
1= <(9%Z) 1(8_TQ%Z)eT,av€T,b> cr(er.a)erers)

TZ

T T3 -
19 = —1—Zc (Te;)er(Te;) = l(2N — dim X)
= T 2. T i)er\dle;) = T X 1m .

Let C1,4, D14, Capy Dy, be the operators defined in (1.11) with respect to

(w1, THW, g7X), (2, THV,g™"). Let kit ~"'?) be the L2-metric on H(Z, F|z)

with respect to g%z ,h¥ defined in Section 1.2.
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THEOREM 4.3: (i) For any u > 0,
. 1 _ 1
(419) lm_Tr [Nof/(Daur)] = ¢Tr [Nof/ (D).

(ii) For any u > 0, there exist C,6 > 0 such that for T > 1,

C
Té+1°

—~1 8"‘T ’
ST
(ili) For 0 < uy < up < +oo fixed, there exists C > 0 such that for u € [uy, ug],
T>1,

(4:20) [T, | (D)~ i T [(20x ~dim X)f'(Dz,0)] | <

(4.21) | Try [N2f' (Ds,um)] | < C.
Set
4oo . 1 .
(4.22) f_/l f(2)t+/0[f(2) l]t'
THEOREM 4.4: We have the following identity,
(4.23)

lim {/1+oo {%SOTrs[NZf'(D&%T)] - %XI(Z’ F)}C—iug

T—+o0
- Z(T -1) [Trs[NZ|Er] - TYs{NZ|ET+1]] IOgT}
r>2

= [ e (Dau)) - T N } 2

7
1
= ST T(d, + VBB R 4 5F'f{ Tre[Nz(m,] — Trs[Nwa]}.
r>2

THEOREM 4.5: We have the following identity in Q°/Q5?°,

/1+°° %{cp"[‘rs [(ZNX - dimX)f’(%w(H(Z, F‘Z),hg(Z’F'Z)))]

dT
T

(4.24) — o Tr, [(2Nx - dimX)f’(%w(Eoo’ hEm))”

= —T(H(Z, F2), Eco, 1 (Z:F12) pFoo),

THEOREM 4.6: Forany T > 1,

. 4, 0 ,
lim ¢ Tr, [*T}Eﬁ(*T/e)f (D3,s2,T/s)]
2 . 1, .
=2 / e(TY, V™ o Tr,[Nx /(D1 72)] — o lim X x(X) x(¥) tK(F).
Y

(4.25)
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Let VLZ be the connection on (T'Z, g%%) defined in Section 1.1, and let RTZ
be the curvature of VZZ.

Put W = W x R} and § = § x R}. Define #: W — S by #a(x,T) =
(m3(x),T). Let p be the projection W — W and let p' be the projection W -
R:.

Let Z be the fiber of #3. Then TZ = p*TZ. Let ng be the metric on TZ
which coincides with g5Z over W x {T}. Put THW = p*THW @ p*TR*. Let
VT2 be the connection on TZ defined in Section 1.1. By [B4, Theorem 1.1}, we
get

> a1 )
TZ _ «oTZ Lo TZy-1 TZ
(4.26) V1% = pvTZ 4 dT(—BT +5(977) " 507 )

Then VTZ preserves the metric g7Z. The curvature R7Z of VTZ is given by

—~ . 8 _ a
(42 R = pRY7 +dT (57 VE - 5 (5. (65 tmat7])-
Definition 4.3:  Set (cf. [BZ, Definition 4.19])
(4.28)
0 i} 0
~ TZ TZ TZ\-1 TZ
er(TZ) = ab Pf[ (R Jrb((S‘TV h —[V 7 lgr”) oIt ]))]b:()'

By a standard argument in Chern—Weil theory, we know that
(4.29) 8—6];~(TZ, vIZ 9IZy = ¢.(TZ).
THEOREM 4.7: The following identities hold,
(4.30) er(TZ)=0(1/T?*) when T — +o0,

+oo TZ

/ e(TZ)dT =&(TZ,VT2,°0" %) in QW /QW°.

1

THEOREM 4.8: There exists C' > 0 such that for ¢ €]0,1], e < T < 1,
-1 0 l 2 F i F

(@31 Jo T, [}, grlers)f (Docarid)] = 2 [ #1297, 05| < €.

THEOREM 4.9: There exist 6 €]0,1],C > 0 such that for € €]0,1], T > 1,
(4.32)
-1 9 ' 1 - ,
)‘pTrs [*T/s ﬁ(*T/s)f (D3,52,T/s)] - T‘Pﬁs [(2NX - dlmX)f (D2,s2)”
C
< Tits
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4.3. PRrROOF OF THEOREM 3.1. At first, we study individually each I?
(1 < k £ 4), by making in succession A — +o0, Ty — +00, £ — 0. By using
(1.33) and (5.4), the above seven intermediate results, and proceeding as in
[BerB, §4(c)], [Mal, §4(c)], we get

o0

433) I} =-T(@fV, g™ hHER0) _ N r(d, + VE BB pFre)
r=2
1, 1 :
+ 5TH{X) |5 dim Y X (Omk(F) + X' (X, F)| - T, [Nze..]},

I3 =T(H(Z, Fz), Eco, K7 (#112) pE=),
18 =T(18'W,g7%,hF) + 213 { = £ dim 2x(2) rk(F) + X (2. F) },
=- /Y e(TY, VI )T(T{'W, g™*, hF)
+ [ @rz,977,09™) £(97,47)
Z
1., (1 .. ,
+ 503{ 5 dim Xx(OX (V) 1k(F) = Xx(V)Y(X, F) }.

Of course, we must study the right term of (4.16). Note that by [R, §22, Theorem
17], if oy, € Q0 is a family of smooth exact forms on S which converge uniformly
on any compact set K C S to a smooth form «, then o € Q5°

By (4.16), 3"%_; I € Q°. Now by analysing the diverging terms appear in
succession A — +oo0, Ty — 400, € —+ 0, as in [BerB, §4(d))], [BG, §9.5], we know
easily that Y24, I3 € Q5°. By (4.33), we get Theorem 3.1. |

5. Proof of Theorems 4.3, 4.4 and 4.7

This Section is organized as follows. In Section 5.1, we calculate the adiabatic
limit of some tensors. In Section 5.2, we calculate the asymptotic expansion of the
superconnection Ay when T — +00. In Section 5.3, we state two intermediate
results, from which Theorem 4.3 follows easily. In Section 5.4, we prove Theorem
4.4. The reader who is only interested in the Ray-Singer metric (i.e., formula
(0.6)) can skip this part, and only uses Section 2.2 to prove Theorem 4.4. In
Section 5.5, we prove Theorem 4.7.

We use the assumptions of Section 3.2, and we use the notation of Sections 1,
3.2 and 4. Recall also that f, g are the functions defined in (1.26).

5.1. ADIABATIC LIMIT OF SOME TENSORS. In the sequence, if ap(T € [1, 4+00])
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is a family of tensors (resp. differential operators), we write that as T — +oo,
QT = Ooo + O(I/Tk),

if for any compact set K’ C W and any p € N, there exists C > 0 such that for
T > 1, the sup of the norms of the coefficients of oy — oo and their derivatives
of order < p is dominated by C/T*.

We also use the above notation for tensors or differential operators on V, S.

For U € TS,V € TV, let U¥ ¢ TEHW,UF € TFV, VH € THW be its
horizontal lifts so that ng*U{I =U, m, U = U, 71'1*V1H =V.

Recall that VTX,| VTV VIZ are the connections on (TX,g7X), (TY,gTY),
(TZ, g%Z) defined in Section 1.1. Let Ty, T2, T3 be the tensors defined in (1.4)
with respect to my,ma, w3. Let S1,52,S53 1 be the tensors defined in Section
1.1 associated to (my, TH#W, g7X), (ma, THV, gTY), (73, THW,¢%?). Then for
90,98 € TS,

(5.1) T3(gar98) = [T2(ga, 98)15 + T1 (g2 5. 9F).

By (4.1), we have the identification of vector bundles on W,
(5.2) TW=TfWaoTHZaTX.

Let PTX PT&'W pT"Z  pTZ he the corresponding projections from TW on
TX,THW,THZ,TZ.

Let °VTZ = 73VTY @ VTX be the connection on TZ ~ THZ @ TX. Recall
that S is a 1-form on W with values in the antisymmetric element of End(TW),
and for X € TW, S1(X) maps TX to THW (resp. THW to TX).

Definition 5.1: Let A3, A3, be the 1-forms on W with values in End(7'Z)

defined by: for X e TW.Y,Z € TZ,
Asoo(X)Y = PTX{Sl(X)PTHZY},

(5.3)

(A3 o (X)Y, 2) 1y = (Y, As00(X)Z) s

THEOREM 5.1: The connection VIZ = 0v'7 4 Az oo preserves TX, and its
restriction to TX is equal to VTX. We have

1
(5.4) ViZ ="Vt Ay — Al e

Proof: On each fiber Z, V17 is the Levi-Civita connection of (T'Z, ¢%?). By
[BCh, (4.14), (4.15)], we get (5.4) along the fibres Z.
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Now we consider m7gTY, g7 as tensors on TZ = THZ & TX, by extending
to 0 on the complements. For U € TS, let LU:{; be the Lie derivative operator
acting on the tensor algebra of TZ. Then for Y (resp. X) C* section of TY
(resp. TX), let Z = Y{{ + X. By using [B4, (1.5), (1.8)], and [UH , X] € TX, we
get
(5.5) (LU;* g Y, X) :LU;* (" (v, X)) - QTX(LU3” Y, X)

- gTX (YlH’ LUaHX)
= <[U§H’Y1H]’ X>gTX =~2 <Sl(U§{)YlH7 X>ng ’
U5, v =[U3, Y1 + PTX[UST Y ).

By [B4, Theorem 1.1}, (5.5), we get

1 _
VidGsZ =LynZ + 5(9;":2) YLyngt?)(2)
1 _ H
(5.6) =05, 2+ 5(¢") T PT A (Lyper ) 2)

1 —
+ 5™ P (L™ (2)

, 1,
=(VER)T + VIEX + A5 00UV = 5 45 o (U)X,

By (5.4), we also get the property of V2. The proof of Theorem 5.1 is completed.
[ |

THEOREM 5.2: (i) For X € TX,Y e TW,Y' € T W,

(5.7) T (S5, r(X)Y,Y')p = (Si(X)V,Y").
(ii) For X e TY, U € TS,Y € TV,

(5.8) (S5, r(XIY, UST)p = (S:(X)Y, U5T).

Proof: By using (5.4), [B4, (1.5)], and proceeding as in [Mal, (1.28), (1.30)], we
get Theorem 5.2. Comparing to [Mal, Theorem 1.7], the horizontal space T4 W
doesn’t change here, so the final formula is simpler. 1

5.2. ASYMPTOTICS OF THE SUPERCONNECTION A7 WHEN T — +4+o00. Let
dvx,dvy,dvz be the Riemannian volume forms on X,Y,Z with respect to
9%, g™, g"%. Let { )pr-z)or De the metric on A(T*Z) ® F induced by
gT%,h¥. Recall that DX, D¥ are the operators defined in (2.8) along the fibres
Z.
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Definition 5.2: Fora € V, s € 8, let Eq, Ey s (resp. Ey 5) be the vector spaces
of the C™ sections of A(T*Z) @ F on X,, Z, (resp. Ker DX on Yj).

Fora € V,s,s' € E,, put

(5.9) (s:8') g, Z/X (5,8 ) (T 2)0F VX

For p € R, s € S, let B, By, be the Sobolev spaces of order  of sections of
A(T*Z) © F, Ker DX on Z,,Y,.

For a € V, let p, be the projection from E, on Ker DX with respect to ( >I E,
and let pt = 1 —p. Let { ) be the Hermitian product on Ey with respect to
the metrics g72, k¥ as in (1.9). Let E®* be the orthogonal bundle to E? in

(B3, ( )
Definition 5.3: For T > 1, set

(5.10) Aur =TNXCy2 7 TN, Ap = A7
Then
(5.11) ¢ Trs [Nzf'(D3u2,1)] = ¢ Trs [Nzg(ALr)]
_1 0% _10%p
(pTI'S *Tl—an,(D&uqu):l = QO'I‘I'S [*Tlﬁg(Az’T)jl .

Let A(TO) (resp. Ag?o)) be the part of Ar of degree 0 (resp. > 0) in A(T*S).
Let Ty 7y be the restriction of 71 on TY. Let V?’” be the Hermitian connection
on Ej defined as in (1.10) with respect to g-Z. Let cr(-), (resp. c(+), €(-)) be the
Clifford action of TZ on A(T*Z) with respect to g2.# (resp. g7#) defined as in
(1.14). Then by (1.17) and (2.17),

A © _ Linp L x
(5'12) AT = §(TDX + DH + T(ITMTY + ZTuTY))’
1
A,(T>O) = TNx (V?’“ - §CT(T3)> T-Nx,

Let f1, e; be orthonormal bases of (TY, g7Y), (T X, g7X). Let {94} be a basis of
TS. Let ki, ko, ks, 1 be the horizontal 1-forms on W, V, W associated to (my, gTx )
(73,gTY), (w3, 9%%) defined in (1.13). Let VLZOFY 0GTZ0F 0yTZ0Fu e the
connections on A(T*Z)®F induced by (VIZ, vFw) (OvTZ2 vF) (0OVTZ yhw),
For U a vector field on S, s € C*°(S, Ey), set

(5.13) WEys = OVTZ@FU;zs,

1 1
OVE,s = 5kl(U;’ )s + ikz(UQH )s + OVT2CFY s,
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Let C be the superconnection on Eg,
O E,u 1 H 1
(5.14) C="V=*+ §D - §c(T2).
THEOREM 5.3: When T — +o00, we have
1
(5.15) Ar = §TDX +C+0(1/T).
Proof: By Theorem 5.2,

(5.16) k3,1(9a) = k1(ga) + k2(a)-

By Theorem 5.1, we get

(5.17)
TNx V;Z@F,uT—NX _O0gTZeFu

-+ % <A3,oo(')fla ej>ng (C(fl)c(ej) - z:\(fl)g(ej))
By (5.1}, we have

618) T er(Ty(ga, 9T = eTalgas 98)) + 16(T1(90:99))

By (1.16), (1.17) and (5.16)-(5.18), we get (5.15). ]

THEOREM 5.4: For any T € [1, +o0c], the operator pArp is a superconnection on
Ey. When T — 400,

(519) pATp = 02$1 + O(l/T)

Proof: Let VH(X.Fix)¢ be the connection on (H (X, Fix), RH(X.Fix)} defined by
(1.21). Let VX Fix) be the connection on Q(X, Fix) as in (1.16) corresponding
to g7*, h¥. Then by Proposition 1.1,

(520) VH(X,F|X),u — pvQ(X,F]x),up‘
By using (5.14) and (5.20), we get

(5.21) pCp = Ca 1.

By Theorem 5.3 and (5.21), we get (5.19). |
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5.3. THE MATRIX STRUCTURE OF A%. Let VA(T"X) be the connection on
A(T*X) induced by VTX. Let RMT"X) be the curvature of VAT X), Let ¥ =
w(F, hF). Let RF“ be the curvature of V. By (1.7) and (1.8),

1
(5.22) RFw = —Zqﬂ.
Put
(5'23) ET - pA%’pv FT - ATp )

Gr =ptAkp, Hyr=ptAkpt

Then we write A2 in matrix form with respect to the splitting E§ = EY @ Ep™,

2 | Er Fr
A _[GT .

THEOREM 5.5: There exist operators E, F,G, H such that, as T — +o0,

(524) Er=F+ O(I/T), Fr=TF+ 0(1),
Gr=TG+0(Q1), Hr= T?H + o).

Let

(5.25) Qoo = -;—[DX,C]-

Then Q. (EY) C E?’l, and Q) is a smooth family of first order elliptic operators
acting along the fibres X,

(5.26)Qus, = };Z clen)e(SE) (RN 4+ RF)(ei, 1) = OV ongs) |

TZQF,
22 ei)g [RA‘T X)+R“)(enga3)-OVn(engga)]

—i—c( DEEIRE(es, £14) = <ol E)Re) VA W) )
TZ3F,u

— SOV W) ) -

4 Lefengesths(ga).

~ TZQF,
29U OV, ) (@)

Moreover,

(5.27) E= pC2p, F = onopJ_’
G =p'Qwp, H=gp-D¥?p".
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Proof: By (1.16) and (2.6), we have

TZeFu 1.
529 DX = c(e:)’V,, *" ~ Zélei)¥(e:),
’ TZoFu 1.
DY = c(fl{-ll)ovfﬁl - ic(fzﬁ)q’(fﬁ)

By (5.12), (5.28) and Theorem 5.3, the proof is as same as [Mal, Theorem 5.10].
|

By (5.21) and (5.27), we know
(5.1) 022,1 =p(E - FH'G)p.

5.4. TwO INTERMEDIATE RESULTS. If C is an operator, let Sp(C) be the
spectrum of C.

Recall that D, = d, + d} is defined in (2.11). For r > 2, s € S, set Sp Df‘s
(resp. Sp D%°) to be the spectrum (resp. the positive spectrum) of Sp D7 ;. The
constants ¢y, cg > 0 are fixed once and for all such that

(5.30) |J Sp D220 Clder, 4o and ]0,8ei[n | J Sp D}? = 0.

r>2 s€S
seS

Let 4, A C C be the contour in C,
y A

[} e p——_—

>

Y

C

Let A; be the contour in C,
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Let §’, A} be the domains which are bounded by §, A;.

By (2.18), for r > 2, the eigenvalues of A(To) which are O(1/T7~!) can be put in
one to one correspondence with the corresponding eigenvalues of %DT. So there
exists Tg > 0 such that for T > Tg,

0.2 6/ n A/
(5.31) Sp Ay N[0, 2¢4[C T2(n-1) U U T26-1)"

By [B4, Proposition 9.2}, for any u > 0, T > 1,
(5.32) SpA2 = Sp(u2A$)’2).

By (1.26) and (5.32), it is clear that for u > 0, T > T,

2
(5.33) g(u?A2) = 2; / N A( 2) dA.

Set

1 g(u?)) 1 g(u*))
. u A2 — 2 = — .

Let P, r(z,z'), Fy(A2)(z, ') (z,2' € Z,) be the C™® kernels of the operators
g(u?A2), F,(A%) calculated with respect to dvz(z').
Let %, be the map from A(T*S) to A(T*S) defined by

(5.35) a € A(T*S) = u~ 8% € A(T*S).

As [Mal, Proposition 5.14], for « > 0, T > 0, we have

2/\) 2
75 / ™ = v T [NeFu4),
(5.36) [Nzg( )] =, Tr [Nzg(u“"A%)].
Tr, [(2NX - dimX)g(Ai'T)] = ¢y, T, [(2NX - dimX)g(u2A2T)].
By proceeding as in [Mal, Theorems 5.19-5.25], we have

THEOREM 5.6: (i) For m € N, 0 < uy < ug < 400 fixed, there exists C > 0
such that for x, &' € Z,, u € [uy,us], T > Ty,

5.37 6|04|+|a | P ,
. el »
o |0‘|f|;;lz’£|)§m dradgle’ ¥ r(z,2")
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(ii) For m € N, there exist ¢ > 0,C' > 0 such that for z,2’ € Z5, u > up,
T Z TOa

Plel+ie| 5 , -
(5.38) lal,slg'ﬁ;m WFU(AT)(QC»x) < cexp(—C'u?).

For A € L(E$, EY), we denote by ||A]|>° the norm of A with respect to | |o.
THEOREM 5.7: (i) For 0 < u; < ug < 400 fixed, there exists C > 0 such that
for u € [ur,us], T > Ty,

0,0
(5.39) lo(u242) — pg(w?CE o~ < /7.
(ii) There exist ¢ > 0,C > 0 such that for v > ug, T > Tp,

0,0
(5.40) Fu(A%) = pFu(C3 8| < /T

5.5. PrROOF oF THEOREM 4.3. By (4.18), (5.36), (5.37), (5.39), and by pro-
ceeding as in [BL, §11(p) and 13(q)], we get Theorem 4.3.

By (5.38), (5.40), and by proceeding as in [BL, §11(p) and 13(q)], we get the
following result which will be used in the proof of Theorem 4.4.

THEOREM 5.8: There exist 6 €]0,1],C > 0 such that for u > ug, T > Ty,
(5.41) | Tx, [N2Fu(43)] - Tr, [NzFu(C3))]| < O/

5.6. PROOF oF THEOREM 4.4. We use the notation in Sections 2.2 and 3.2.

Recall that (E.,.,d.)(r > 2) is the Leray spectral sequence associated to
71: Zy = Y, and F. Let VE*(r > 2) be the adjoint of VE+ with respect to
hEr. Let VErv = %(VET + VEr*). By [BLo, Proposition 2.6], we have

(5.42) VEr+1 = p VErp,.

By recurrence and (1.22), (5.13), we get

(5.43) VE = p,VEp,.
So we have
(5.44) VE = p OV Eup, .

For v > 0, r > 1, put

1
(5.45) Cro = VE¥ 4 SuDr.
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Forr>2,T> 1, put
Frr = o (A= T 1 A0)"14),
(5.46) 2T J(reC M =vaz)
5r+,T =1- 5T,T7 qr, T = ﬁT,T - ’ﬁr-l»l,T-

Let prr(z,2'), pr(z,2') (x,2' € Z,,5 € S) be the C* kernels of the operators
Dr.T, Dr With respect to dvz(z').
To follow {Ma2, §2|, the following result is crucial.

PROPOSITION 5.1: For any m € N, there exists d > 0 such that under the norm
c™, forr > 2, T> 1, we have

(5.47) prr(z, ') = polz,2') + O(1/T?).
Proof: By proceeding as in [Ma2, Proposition 2.12], we get (5.47). |

Let (Tk‘lA(TO);EhT)(x, x'), (Depr){(z,2") (2,2’ € Zs,s € S,k > 2) be the C*
kernels of the operators Tk_lA(qg)ﬁk,T, Dy.py, with respect to dvz(z'). By (5.46),
as in [Ma2, (2.62)], we get

(5.48) (T AV 1)z, 2') = (Dipi) (. 2') + O(1/T?).
For u > 0, set
(549) Ar,u,T = AT"_lu,T'

For2<r<n=dimZ,T > T, set
1 -
Frar =5etue T [Nz [ g0 = 42, )7,
e L A,

_ 1 [ 2 _ 2 -1
Fruoo —27ri"/)u50Trs LNZ /A1 g(u )‘)(/\ Cr,l) d)‘]a

1 i
(5.50) Graur =5 —tupTry | Nz / g(u?X)(\ - Ail,T)“d)\] for r > 1,
- é

_ 1 [ 2 2 -1
G =gt Tra [Nz [ g6V - Gy a].

1 r _
Griuem =grytue e [Nz [ gu2NA =€) 7'ar]
Then for 2 < r < n,
(5.51) Fr,u.oo + Gr,u,oo = 99Trs [NZQ(CE,u)] .

By using (5.47) and (5.48), and proceeding as in [Ma2, Theorem 2.19}, with
necessary modification, we get
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THEOREM 5.9: (i) There exist 6 > 0, C1 > 0, C > 0, Ty > 0 such that foru > 1,
T > Ty, 2 <r <n, we have

C _
(5.52) Pt = Frucol < 7 Gru,
(ii) There exist forms a,; 1,bn 7 (T € [To,+00],1 <r <n,—dimS <i<0),
C* on S, such that

-1
G'r,u,oo = - Z ar,i,ooul + Trs [NZ|E,.+1]7
i=—dim S
-1
Gn,u,T = Z bn,i,Tul + X,(Z’ F)

i=—dim S

(5.53)

When u — 0, uniformly for T > Ty, we have

0
(5.54) Frur= Y arigu'+0(u) forr>2,
i=—dim S
0 .
Giur=-— Z a;ru’ + O(u).
i=—dim S
(iii) We have
(5.55) Grope =Trs [Nzi5, | = Tr, [Nzpp,,, | forr 22

There exists § > 0 such that for 1 <r <n, when T — +00, we have

Ari T = Qpjc0 + O(I/Té)»

buiT = —Gnioo +O01/T%) fori<0,
(5.56) AT b (/1%

n
bo s 7T~V 4 Zam‘,TT_(r_l)i =—ayr fori<O.

r=2

As in [Ma2, (2.106)], for T > T, we have

(557) Gl,u,T = Z Fr,T"“Hu,T + Gn,T—("‘l)u,T'

r=2

By using Theorems 5.8, 5.9 and (5.57), and proceeding as in [Ma2, §2(e), (f)], by
[BLo, Definition 2.20], we get Theorem 4.4. 1
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5.7. PrROOF OF THEOREM 4.7. We use the notation of Section 4.2. Let
(5.58) 'WEZ = p-NxyIZpNx = gTZ = T-NxyTZNx,

Let ‘RLZ be the curvature of 'VZZ. Then V77 preserves the metric p*g7% on
TZ. By (5.4),

1
(5.59) 9Tz —oyTZ 4 f(Ag,oo — A% o).
By (4.28), we get
(5.60)

er(T2) =

0 1 0 1 3}

9 pe| L ('pIZ O grz _ Liiorz [ TZ\-1 Y TZ _

% f[27r<RT +b(8T VE - 5[ VE 6F) 7 et o
By (5.59) and (5.60), we get the first equation of (4.30), and we get

+eo 1 TZ 1=T2
er(TZ)dT =e(TZ,/V"'4,'V
(5.61) /1 T( ) ( 0

= (T2, VTZ,°0"%) in Q% JQW°.

The proof of Theorem 4.7 is completed. |

6. Proof of Theorem 4.5

We use the notation of Section 3.1.

Let F = FO > F1 D ... D F" = 0 be a filtration of flat vector bundles of F on
S. For i > 0, set Gr' F = F'/F™*!, Let h¥ (resp. h®F) be Hermitian metrics
on Fi(resp. Gr F). Let hF" be the metric on F* induced by AF.

Let G be the orthogonal sub-bundle of Fi+! in Fi. Let A®" be the metric
on G' induced by hS"'F. Let PY" be the orthogonal projection from F on G'.
We denote Ny the number operator on G and GrF. Let h'" = @ kS be the
metric on F = @ G*.

Let hY (T > 1) be a family of metrics on F such that A" = h¥ and that there
exists & > 0, such that when T — +o0, for s, € F?, 55 € FJ, we have

(1,820 = T3 ( <PG"31,PG1'52>W + 0(1/T5)),

2 0 1 -
() 5hf = 2TV (2(n = Nu) + 0(1/T%)) T,

(6.1)
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PROPOSITION 6.1: Set

62)  T0EAF) = [ ot [ o D)

_NH 1 GrF 1 GrF
2<pTr[ (VO b )]}dT.
Then
(6.3) I(hg, hEF) = T(F,Gr F,hF ,h%"F) in Q% /Q%°.
Proof: For ¢t € [0, 1], set
(6.4) W, = @T¥hSCF, KL, = thE, + (1 - t)Af.

By [BLo, (1.24)], as in [BLo, (1.26)], we get
(6.5)  I(hp,h%F) - I(hF T hOE) =

+o00
‘pd/ / hf) aThT)(hTt) Y& hTt)f"(w(F,h{t))]dth.

By (6.1) and (6.4), we also verify that the right term in (6.5) converges.

hGrF)

The real, even form I (h%l, verifies the following conditions as in [BLo,

Theorem Al.1]:
(a) The following identity holds,

(6.6) dI(ht,;, h%F) = F(VF,BF) — F(VEF, RET),
(b) If S’ is a smooth manifold and «: S" — S is a smooth map, then
(6.7) I(a*h?l, a* hSF) = a*I(h?l, hCTFY,

(c) If (F,h¥) = @,(Gr'F, hCr'F) then I(hE |, REF) =0.

(d) I(hE |, h®F) depends smoothly on VF, VS and hC'F.

Now, we can apply the techniques of the proof of [BLo, Theorem A1.2]; we get
(6.3) for hf ;.

By (6.5) and (6.3) for h;,n the proof of Proposition 6.1 is completed. |

Proof of Theorem 4.5: Let DZ be the operator defined in (1.10) with respect
to (7r3, 972 hF). Let { )r be the metric on Ey defined in (1.9) with respect to
Z hF. Let Pr be the orthogonal projection from Eq on Ker DZ ~ H(Z, Fiz)

w1th respect to (). Recall that hH(Z F12) is the metric on Ker DZ ~ H(Z,Fz)



Vol. 131, 2002 FUNCTORIALITY OF REAL ANALYTIC TORSION FORMS 37

induced by ( ). Let Pr be the orthogonal projection from Eg on Er = Ker AE,? J
with respcet to { ).
By (2.6) and (4.3), the linear map

Cr = TN =24 % (B, )p,d?) = (B, (), df)
is an identification of Hermitian chain complexes. By (2.17), we know
(6.8) Pr = C3PrCr.
For o, o/ € Eg, we have

{Pra, PTCxl>T = <C:;:1}~)TCTQ, C;IISTCTC!’>T

_ 1
T pdim X

(69 <f>TTNXa, PpTNx o/> .

By (5.31) and (5.46), for n = dim Z, we have

(6.10) Pr= Pn+1,T-
Now, by Proposition 5.1, and (6.9), (6.10), as in [Ma2, 1(f)], we know the
metric Tdimxhg(z’F'Z) on H(Z, Fz) verifies the condition (6.1).

Remark also that by [BLo, Proposition 1.3],

Tr, [f’(%w(H(Z,ﬂz),hH(Z’FlZ)))] =S (—1) dim H'(Z, Fiz)

i

(6.11) = x(Z)rkF,
Tr, {fl(%w(Eoothm))] = 3 "(~1)7*7 dim B2 = y(Z) 1kF.
p.q
By Proposition 6.1 and (6.11), we get Theorem 4.5. ]

7. Proof of Theorem 4.6

This Section is organized as follows. In Section 7.1, we establish a Lichnerowicz
formula for A?)T /e~ In Section 7.2, by an argument of [BZ, §4], we can use a
Getzler rescaling on the operator L§ _ . Then we prove Theorem 4.6.

In this Section, we use the assumptions and notation of Sections 4 and 5.

7.1. A LICHNEROWICZ FORMULA. Recall that we denote ¢;, f;, e, orthonor-
mal bases of (TX, g7X), (TY,¢TY), (TZ,¢T%), and that we denote €*, f', e the
corresponding dual bases. Let g, be a base of T'S and let ¢ be the dual base
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of T*S. Let cr{es), er(e,) be the action of e, defined by (1.14) with respect to
(TZ,9%%). Then for u € R,

(7.1)

TN%ep(Te; + uf)) TN = cle; +ufy), TVNXep(Te; +uf)T~Nx = cle; +ufp).

Set

(72) L3 e,T — (T/E)NX C;,sz,T/e(T/e) As T/e*

Then

(7.3) T, |+7; (i* ) (C3 )| = Tr, |*51 (i* ) LS. )
. s |"T/e\ §T T/e J9\Lg 2 17:) | = Lo T/\ 3T T/e g( 36,7/ -

Let Ps . r(z,2') (z,2' € Z;) be the smooth kernel associated to the operator
9(L§ . r) calculated with respect to dvz(z'). For b € Y, set

1,0
(7.4) ge1(b) = /Xa pTr, [*T/l‘E (aT*T/a)PS (T, l‘)]d’l}x

By (7.3), we get

1,0
(7.5) o To [7h 109Gy = [ gy

Recall that VX VTY VZIZ are the connections on (TX,gTX), (TY,g™"),
(TZ,9%%) defined in Section 1.1. Let RTX,RTY RIZ be the corresponding
curvatures. Recall also ¥ = w(F, hF), and let RF* be the curvature of V¢,

Let 'V3.2€F* be the connection on A(T*Z) & F,

(7.6) 'y O = pNx g TZOFup—Nx,

Let RTY € Q(V,End(A(T*Y)), RLZ € Q*(W,End(A(T*Z)) be defined in (1.18)
with respect to (TY,gTY), (T'Z,g%%). Then

TNx REZT—Nx =i [(ei, R%Zeﬁg” (e;)cl(ef)

(1.7) + 2 e BEZ 1) o 28U + (i BB g DR )
and define Rz r € Q?(W,End(A(T*Z) ® F)) by

(7.8) Rar = (TNXREZTNX © Ip) + (Iz¢r-z) ® RPY).

Let KZ be the scalar curvature of (T'Z, g7X & T?n;g”Y) along the fibres Z.
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By using the Lichnerowicz formula [BLo, Theorem 3.11], we get

T? T
(79) L3 e T = 7 T (/V;/Zséef’u + —2_ <S3,T/£(€i)ej7 ga)T/s C(Cj )ga

<SS T/e(el)flv ga>T/e C(.fl

m!v—-l

2
+ ’53 <S3,T/e(ei)gavgﬁ>T/E g% A g”)

c? |
(VR = (S s 9 )9

+ g; <Sﬁ,T/E(fIf)€i? ga>T/s C(ei)g

1 2
+3 <S3,T/s(fl)gasgB>T/5 g% A gﬂ)

r? -Z 1 @ B8
+ 15 B1e T 39° N9 A Ra7/c(9er 95)

2
+ Ze(felfm)Ra1/elfis fm)
T eT
+ greleicle)Ryrye(ei e5) + —ele)elf)Raryeleis f1)

~9° A e(f)Ra 1. (ga )

2 2 2
+ %{-1;1—\11(62-)2 + %\I}(fz)z + %?(ei)ﬁ(ey')[‘l’(ei)’ es)]

eT .. . €2
+ —Ic(ei)c(ft)[‘f’(ei)’ Y(f)] + 5 () [¥(f1), ¥(fm)]

2
e ele (VRS ) ;)
~ e VRS D )

~ el (VIS ) )

T
+ -Q‘QO’ Acle)Ra 1/e(gares) +

52 ~, Fau
= S eEUm) (V5 ) ()
T TZGFuy, TZQF,
— 9T (Vi 5 (o) = 29 ) (V. "O)(f):
7.2. THE GETZLER RESCALING ON Y. To calculate the limit as ¢ — 0 of
ge,7(b), we proceed as in [BCh, §4].
First as in [BCh], by using finite propagation speed of solutions of hyperbolic

equations [CP, §7.8], [T, §4.4], one can show that the problem calculating the limit
of g. r(b) as £ — 0 is local on Y. Namely, if by € Y,, we may instead assume
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that Y; replaced by (TY),, = R™°, with 0 € (TY),, = R™ representing by, and
the extended fibration over R™° coincides with the given fibration near 0 ~ bg.

Let VA(i*X)®F’“ be the connection on A(T*X)®F induced by VIX , VFu, Let
VAT S)BATY) be the connection on w3 A(T*S)@A(T*Y) along the fibres Y,
which is induced by VAMT'Y) | Recall that S, is the tensor defined in Section 1.1
associated to (g, TV, gTY). Let PTY be the projection from TV = TY  THV
on TY. And the application ¢, is defined in (5.35).

Definition 7.1: Let 'v™MT"98AT™Y) b the connection on TEA(T*S)RA(T*Y)
along the fibres Y,

(7.10) 'Y THATTSIBATY) _gm AT SBATY)
+(Sa() f1, 982) e(f1)9™ + (S2()9dla 912) 9% A P
Let V® be the connection on
T3 A(T*S)BA(T* Z) © F = n}(myAT*S)BAT*Y)B(A(T*X) ® F)
along the fibres Z,
(7.11) Ve = w;’v”EA(T*S)@A(T*W ©14 10 VAT X)eFu,

For Y € R™°, we lift horizontally the paths ¢ € R} — tY into paths ¢ €
R} — 24 € Z;, with &y € Zyy, dz/dt € THZ. For 2y € Xo, we identify TX,,,
(ngA(T*S)@A(T*Z) ® F)y, to TX,,, (n5A(T*S)®A(T*Y))boé)(A(T*X) ® F) o
by parallel transport along the curve t = z; € Z; with respect to the connections
VTX’ wsved};l_ ~

Let T be the connection form of (v 2T SIBATY) By using [ABoP, Propo-
sition 3.7], we see that for Y € TY = R™?,

1, rs A(T*)BATY),
(7'12) FY — 5(IV 2A(T S)QA(T'Y) Z)bo(Yy') +O({Y|2)-
ProrosiTION 7.1: The following identity holds,
AT SBAT Y),2 1 PN
(7.18) ' IONIINE 2 (GTYR g, fr) (el f)el fm) = EAIE Fm)
+{(S2PTY S, + VTY S3)gH,, gl g% A 6P

+ (V% 82) f1, 98l2) e(f1)g°.
Proof: If A € End(TY), the action of A on A(T*Y) is given by

1 PUNAON
12 A fn) (c(felfm) - Vo Fm))-
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So we find

(7.14) VA(T'Y)’2 Z<vazfi’fm>( fi)C(fm _A(fi)c(fm))

Now, using the identity

(/9% e(f)g”] = 28i59°¢”,
(7.13) follows easily. |
By [B4, (11.61)], for X,Y € TY and Z,W € TV,

(VIY2(X,Y)PTY Z, PTYW) + ((S2PTY $2)(X,Y) Z, W)

(7.15) +(VTY S)(X,Y)Z, W) = (VTY2(Z, W)X, Y).

The operator L3 _p acts on the vector space Hp, of smooth sections of
(TA(T*S)BA(T*Y )b, O(AMT*X) © F))x,, over R™ x Xp,.
If se E, set

(Fes)(Y,z) = s(2Y /e, z), for (Y,z) € R™ x X,,,

(7.16) B
Lg,s,T = FE ng,e,TFﬁ'

Definition 7.2: For ¢ > 0, set

(7.17) 5(f) = 2 A =Sig

Let L} _ r be the operator obtained from the operator L3, r by replacing the
Clifford variables ¢(f;) by the variables ¢.(f;).
Let Py, p((Y,z), (Y',2)) ((Y,z), (Y',2’) € (TY)p, X Xp,) be the smooth kernel
associated to the operator g(L3 .,7) With respect to dv(ry),, (Y')dvx,, (z').
If x € X3,, we can write
(7.18)
1 s xs
7 (2Nx — dim X)P3, r((0,z),(0,x)) =
Z fi1 A+ A fip A if“ oA iqu E(fkl) .o .E(fkr)éRit'T:'ip?jl"'jq§k1'"'kr’
1<i <+ <ip<mg

1<4y < <jgEmo
1<ky < <kp<mg

with R21 “tpij1--Jaiki--kr e 7'('5l ( S)@End( ( )®F)

Set
(7.19)

1 . max Mol
[7@Nx —dim X)L r((0.2), (0,2))] " = REZ ™7 ((0,2), (0,)).
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By [BZ, Proposition 4.9], among the monomials in the ¢(f;),é(fi)’s, only
e(f1)€(f1) - - - ¢(fmo)C(fm,) has a nonzero supertrace. Moreover,

Trs[e(f1)el(f1) -+ e(fmo JEfmo )] = (=2)™.

By proceeding as in [BL, Proposition 11.2] (consider ¢/2 as u there), we get
1 .
o Tr, [?(QNX ~ dim X)Ps,7((0,2), (0,2)) |

e (ot 1 1 max
(7.20) = 2mo(_1)__0._0_(2 + )<PT‘rs [ [T(2NX —dimX)P:?’E,T((O,l'),(O, .'l'))] ]
We denote Vy, the ordinary differential operator on (TY)p, in the direction f;.

By using Theorems 5.1 and 5.2, (5.17), (7.9) and (7.12)-(7.14), and proceeding
as in [Mal, §7], we get, when ¢ = 0,

1 2
(7.21) Ly .r—L3or= —(v nty (RTYY, fl>ngY ) +RYY +C} 12
0
7.3. PROOF OF THEOREM 4.6. Set
1 2
(7.22) HTY (V) = —(Vy, + 7 (BRI, f) g ) +RLY.

For Y,Y’ € (TY )s,, let p:(Y,Y”) be the smooth kernel associated to the operator
exp(tHTY) calculated with respect to dv(ry),, (Y').

Let gr2(z, '), ¢ 12 (x,2’) (z, 2 € X) be the smooth kernel associated to the
operator exp(—C7 r2), f'(Dir2) = (1 — 2C% 12)exp(—C3 1) with respect to
dvx(x'). Using (7.21), and proceeding as in [B1, §5], we see that for x € X, as
e—0,

(7'23) PZ?,e,T((Ov 33)? (Ov ‘T)) -)p1(0, O)qf.T2($’ .’L‘)
—2H™ (V)p1(Y,Y')) |y =yr=0072 (2, T).

If R € A(T*V)&¢(TY), then there exist R'"!s € A(T*V) such that

(7.24) R= Y RWN(f,)---ef,)

1<l <-<lg<mo

We denote

(7.25) {R}¢ = R,
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By [BeGeV, §4.2], we get

00— (it g T o

sinh(tRTY /2)
(7.26) — Q—mo(—l)M(ﬂ?lﬂe(TY, vTY)’
{(H™Y (Y)po(Y,Y"))|y=y'=0}° = —E{Pt(O»O)}uﬂ =0.
By (4.18), (7.20), (7.21), (7.23) and (7.26), we get that, as ¢ — 0,

) ., 0
(7.27) Ellj%(pTrs [*T/lE a_T(*T/s)f/(D&e?,T/s)]

- %/Ye(TY, VT )p T, [(2Nx = dim X) ' (Dy72)].

To finish the proof of Theorem 4.6, we must calculate Trs[f'(Dy 12)]. At first,
as in [BLo, (3.74)],

(7.28) 2T (Dure)] =0,

By using local index theory as in [BLo, p. 334, we get

(7.29)  Jim o Tr,[f'(Dr)] = /X e(TX, V%) T[(1 — 2R"*)exp(~R¥)].

By [BLo, Proposition 1.3],

(7.30) Te[(1 — 2RF%)exp(—RF)] = 1k(F).
So, for T > 0,
(7.31) Trs[f'(Dy,72)] = tk(F)x (X).

By (7.27) and (7.31), the proof of Theorem 4.6 is completed. ]

8. Proof of Theorem 4.8

This Section is organized as follows. In Section 8.1, we state a result from which
Theorem 4.8 immediately follows. In Section 8.2, using finite propagation speed,
we show that the proof of our main result is local on Y;. In Section 8.3, we prove
our main result.

Here, we use the assumptions and notation in Sections 4.2 and 7.
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8.1. A REFORMULATION OF THEOREM 4.8.
THEOREM 8.1: There exists C > 0 such that for0 < u <1, T > 1,

81 [T [ G Daayrn)] -2 [ H@217" 05 < T

Remark 8.1: 'Theorem 8.1 implies Theorem 4.8. Infact, for0 < e <1,e <T <1
we use (8.1), with u = T and T replaced by T/e, then we find that the right-hand
side of (8.1) is dominated by Ce. So we have proved (4.31).

8.2. LOCALIZATION OF THE PROBLEM. Let r > 0 such that

r< Helg {injective radius of the fiber (¥;,g7Y)}.

Let a €]0,7/4]. For b € V, let BY (b,«) be the open ball of center b and radius
a.
Let fi be a smooth even function defined on R with values in [0, 1], such that

fi(t) =1 for |t]| < /2,

82) 0 for [t| > a.
Set
(8.3) 91(t) =1 - fu(t).

Definition 8.1: For u €]0,1], a € C, set

69  R@-[ " (1~ 26¥)explitay/Dexp(—1*/2) f(ut)

. or
Gula) = /_ :0(1 _ 2a?)exp(itav/2)exp(—t2 /2)g1(ut)%.
Clearly
(8.5) F.(a) 4+ Gu(a) = (1 - 2a%)exp(—a?).

The functions Fy(a),Gy(a) are even holomorphic functions. So there exist
holomorphic functions Fy,(a), Gy(a) such that

(8.6) Fu(a) = Fy(a?), Gu(a) = Gyu(a?).

The restrictions of F,,,G,, ﬁu, C~v’u to R lie in the Schwartz space S(R).
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PROPOSITION 8.1: There exist ¢ > 0,C > 0 such that for O <u <1, T > 1,

- 8*T T2
(87) ’T‘I‘s [*Tl T Gu/T(Cg,qﬂ/T?,T)] 1 < C’exp( - C'u—Q)
Proof: By using (8.4), and proceeding as in the proof of [Mal, Proposition 8.4],
we get (8.7). ||

By Proposition 8.1, and the argument in Section 7.2, the proof of (8.1) can be
localized on Y;.

For by € Y, we replace Z, by R™® x X, as in Section 7.2. We also trivialize
the fibres as in Section 7.2. Then we will prove (8.1) in this situation.

8.3. PrRoOOF oF THEOREM 8.1. For n € N, we denote [n/2] € Z such that
[n/2] €]n/2 — 1,n/2]. Let {n/2} =n/2 — [n/2].
By (1.26), (4.18) and (5.35},

_10*r 1
(88) L,OTI‘S |:*T1 0_Tf’(D3’u2/T2’T)] = wusp T‘I‘s [T

By (7.21), (8.8), and standard results on heat kernels, we know that there
exist C > 0, and some C* forms ar; (j > —n,n = dimZ) on S, which depend
continuously on 7" € [1, +c0], such that for u €]0,1], T € {1, +o0],

(2Nx —dim X)g(u LOYT’I)]

_ ()*T 0 1 - u
(8.9) .Trs [ ! f (D32 /12, T)] Z faT,juzj Hn/2H < CT
j=—[n/2]
THEOREM 8.2: For T > 1 fixed, when u — 0, we get
(8.10)
_1 0% 2 [, en(TZ)f(VF,hF) + O(u?), ifdim Z is even
T 1 z-T ’ ' ’
s [*T o7/ (D T)] {O(u), if dim Z is odd.
Proof: We use the same notation as in Section 1.1 and (4.26)-(4.28). Clearly,
(p*F, p*VT) is a flat vector bundle on W.
Using the product structure on W, we can write

0

W 0 O
W w Wy * — W\ -1 T
(8.11) ¥ =d¥ +dTo=, (@¥) = )T+dT(8T+ - OT)

Defining CA73,u, ﬁ31u as in (1.11) with respect to (%3,gT2), we have

~ 1 Ox
_ 7—N N, — T
(8.12) D3, =T N2Dy, 7TV + §dT ! 57
We deduce that
-1 8*T

(313)  1(Ch0ohP) = f(Chos g W) + LT Ty, [ 7 Sl (Dsn7)]-
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By Theorem 1.1, comparing the dT term of (8.13), we get Theorem 8.2. ]
Compare (8.9) and (8.10); we know

(8.14) ar; = 0 if5 <0,

paro=2 [ #(I2)FTFA).
zZ

By (8.9) and (8.14), we get (8.1). |

9. Proof of Theorem 4.9

We use the same notation as in Section 8.1.

ProposiTioN 9.1: There exists C > 0 such that for 0 <e <1, T > 1,

9.1) | Tr,[(2Nx — dim X)G.(C2 2 1)) — ¢ Trs[(2Nx — dimX)CNT‘E(C%,Eg)]‘

C C
< ﬁexp< - 6—2)
Proof: By using Theorem 5.3, the proof is essentially as same as in [Mal,

Proposition 9.1]. 1

Using (8.5) and (9.1), it is clear that to establish Theorem 4.9, we only need
to establish the following result,

THEOREM 9.1: If a > 0 is small enough, there exist § > 0,C > 0, such that for
0<e<1,T>1,

@ Tr,[(2Nx — dim X)Fo(C 2 7. )]—¢ Tr,[(2Nx — dim X)F.(C} )]
(9.2) c
<

By (5.10),
(93) @ Tr,[(2Nx — dim X)F.(C .2 1/0)] = ¢ Trs[(2Nx — dim X)Fo(A2 1/.)].

Let ﬁE(Ag‘T /E)(x, z'} (z,2' € Z;) be the smooth kernel associated to the
operator IZ(A;T /) with respect to dvz(z"). Using finite propagation speed
of solutions of hyperbolic equations [CP, §7.8], [T, §4.4], we know the proof of
(9.2) is local on Y. As in [BerB, §8b)], there is also a smooth Z-graded vector
bundle K C Q, = C®(Xpy, A(T*X) ® F) over (TY ), ~ R™® which coincides
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with Ker DX on BY(0,2aq) (0 < ap < ), with Ker Dgg over TY\BY (0, 3ay),
and such that if K1 is the orthogonal bundle to K in €2,

(9.4) K*nKer Df = {0}.

Let Py {Y € R™9) be the orthogonal projection operator from €, on Ry. Set
Pt=1-Py.
Let ¢: R — [0, 1] be a smooth function such that

P(t) =1 for |t| < ap,

(9.5)
=0 for |t| > 2ap.

Let ATY be the standard Laplacian on (TY),, with respect to the metric
hTYieo. Let Hy, be the vector space of smooth sections of
T (5 (AT S))BMT™Y))u B(MT* X) @ F)yx,,

over (TY )y, X Xp,- Let L - be the operator

1 -
(9.6)  Lir=v2(VDA2y, + 11— w2 (V)( = 2ATY + T2PE DY PE).
Recall that the operation F; is defined in (7.16),
(9.7) L2 =F 'Ll pF..

Let O, be the set of differential operators acting on smooth sections of
(AM(T*X) ® F)x,, over R™ x Xj,,. Then we find that

L2 p € m3(A(T*S)D End(A(T*Y)) 5, ®Op.

Let L3, be obtained from L2, by replacing the Clifford variables c(f;)
(1 £ j < myp) by the operators c.(f;) as in Section 7.

Let A(T*Y) be another copy of A(T*Y), and &(U) (U € TY) acts on it. Let
E® be the vector space of square integrable sections of

T3 (A(T*SHOA(T*Y)RAT*YYOMT*X) 0 F
over (TY)p, X Xp,- Let FC be the vector space of square integrable sections of
3 (A(T*$)OMT*Y)OMT V)RS, K

over (TY)y,. Then FY is a Hilbert subspace of E®. Let F¥ be its orthogonal
complement in E°. Let p, be the orthogonal projection operator from E° on F?;
set p =1 —p.. Then if s € E°,

9.8 pe5(Y) = Poys(Y,:) forY € (TY)y,.
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Put

(9.9) E.r= png,Tpe» For= ‘Pst,TiDel,

GE,T = pé—Lg‘Tpm HE,T = p.ELLg,Tpé.'
Then we write L? ;. in matrix form with respect to the splitting E® = F? @ F2+,

3 _ Ee,Ta Fs,T
{9.10) LE’T—[GE,T, Horl

By using (7.9), we have

THEOREM 9.2: There exist operators E., F.,G., H, such that as T — +o0,

EE,T = Ee + O(l/T), Fs,T = TFE + 0(1)7

(9.11)
Ger =TG. +0(1), H.r=T*H.+O0(T).

Let Q. be the operator obtained from 3y2(Y)[D*X,C] by proceeding as before,
i.e., by rescaling the coordinate Y and the Clifford variables c(f;). Then Q. is
the first order elliptic operator along the fibres X, and Q.(F?%) ¢ F%4 and

F, = perpj‘, Ge = pngspea

(9.12) 1
H, = 7p (PEV DR + (1= Y D)DE ot

We can now apply the techniques and results of [Mal, §9] to complete the
proof of Theorem 9.1. In fact, (8.4) allows us to localize the problem on Y as in
Section 7.

It is easy to see that the last terms of (7.9) don’t cause any trouble in modifying
the estimates in [Mal, §9], so that all the arguments can actually go through here.
By proceeding in exactly the same way as in [Mal, §9], we get Theorem 9.1. |
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