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A B S T R A C T  

In this paper, we prove the functoriality of the analytic torsion forms 
of Bismut and Lott [BLo] with respect to the composition of two sub- 
mersions. 

0 I n t r o d u c t i o n  

In [BLo], Bismut and Lott extended the famous Ray Singer analytic torsion [RS1] 

from an invariant of a smooth manifold to the family case. Namely, they intro- 

duced a real analytic torsion form for a smooth fibration. One of the significant 

facts is that  the real analytic torsion form enters in a differential form version 

of a C°°-analog of the Riemann Roch-Grothendieck theorem for holomorphic 

submersions. 

The purpose of this paper is to prove the functoriality of the real analytic 

torsion form with respect to the composition of two submersions. Let us state 

some of our results in detail. 

Let W, V, S be smooth manifolds. Let 1r1: W -+ V, 7r2: V --+ S be smooth 

fibrations with compact fibre X, Y. Then 7r3 = ~2 o 7h: W -+ S is a smooth 

fibration with compact fiber Z of dimension n. Let T X ,  T Y ,  T Z  be the relative 

tangent bundles. Let (F, V F) be a flat complex vector bundle over W. Let h E 

be a Hermitian metric on F. Then we have the diagram of smooth fibrations: 

X > Z  > W  

;'r 1 7r 1 

Y " V  " S  

Received November 2, 2000 



2 X. MA Isr. J. Math. 

/~dlmX Hi(X, FIx), H.(Z, FIz), Ho(y,H.(X, FIx)) be the Let H°(X, FIX ) = xaJ/=o 
Z-graded vector bundles over V, S, S whose fibers over a E V, s E S are the 

cohomologies H'(Xa, Fix.), H°(Z~, Flzs), H°(Y~, H°(X, Fix)) of the sheaf of 

locally flat sections of F,  F,  H(X, FIx) on Xa, Z~, Ys. Let vH(X'F~ x) be the 

canonical flat connection on H°(X, FIx). 
Let THw, TffV, THw be the sub-bundles of TW, TV, TW which are comple- 

ments of TX, TY, TZ. Let gTZ, gTX, gTV be metrics on TZ, TX, TY. 
Let (~t(X, Fix),  d x) be the de Rham complex of smooth sections of A(T* X ) ® F  

over X. By Hodge theory, we can identify H°(X, Fix ) with the corresponding 

harmonic elements in the de Rham complex (~(X, Fix ), dX). Let hH(X'FL x) be 

the corresponding L2-metric on H°(X, FIx) with respect to gTX, h F. In the 

same way, we note hH(Z'FI z), hH(Y'H(X'FJ x)) the corresponding L 2 metrics on 

H°(Z, Fiz), H°(Y, H'(X, FIx)) induced by gTZ, h F and gTV, hH(X,Fix). 
Let V Tx, V TY, V Tz be the connections on TX, TY, TZ defined in [B1, Defini- 

tion 1.6]. Let THz = THWNTZ. Let  7r~ TY be the connection on TItZ induced 

by V wv. Then °vTZ = "ff*l ~TY ~ ~TX is a connection on TZ = TH z ib TX. 
Let e(TX, vTX), e(TY, vTY), e(TZ, vTZ), e(TZ, ovTZ) be the associated rep- 

resentatives of the Euler class of TX, TY, TZ, TZ in Chern Weil theory. Let 

"~(TZ, V Tz, °vTZ) be the Chern-Simons n -  1 forms on W with values in o(TZ), 
the orientation bundle of TZ, such that 

(0.1) d~(TZ, V TZ, 0 v T Z )  : e(TZ, ovTZ) -- e(TZ, ~7TZ). 

Let f(~,F, h F) be the closed odd forms on W defined in (1.28), which are the 

analogue of the Chern character on the flat vector bundle F.  

Let QS be the vector space of real even forms on S. Let QS,O be the vector 

space of real exact even forms on S. 
Let T(THW, gTX, hF), "]-(TffV, gTY, hU(X,Fix )), ,']-(THW, gTZ h F) be the an-  

a l y t i c  torsion forms corresponding to 7rl, 7r2, ~r3 defined in [BLo, Definition 3.22]. 

The form T(THW, gTX, h F) satisfies the following equation: 

(0.2) 
dT(TIHW, gTX, h F) = f e(TX, vTX)f (~  7F, h F) - /('~ rH(X'FIx ), hH(X'FIx)). 

Jx 

For s C S, the Leray spectral sequence (Er,s, dr,8) (r > 2) [Grot] with respect 

to 7r1:Z8 --+ Y~, verifies E2 = H(Y, H(X, Fix)).  Let h E2 be the metric on E2 
induced by h H(Y'H(X'Ftx )) 

By Proposition 3.1, we know that (Er, dr), (r > 2) is a flat complex of vector 

bundles on S. And the de Rham complex ~(Z~, Fizs), provided with a suitable 
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filtration, calculates the Leray spectral sequence. By using these two facts, in 

Definition 3.2, we define the form T(E2, H(Z, FIz ), h E2, hH(Z'FI z)) on S such that 

(0.3) 
dT(E2, H(Z, FIZ), h E2 , h H(Z'FIz)) ---- f ( V  E2 , h E2 ) - f(~ 7H(Z'Ftz), hH(Z'FIz)). 

The purpose of this paper is to establish the following result, which we state 

as Theorem 3.1, 

THEOREM 0.1: The following identity holds in QS /QS,O, 

T(Tff W, gTZ, h F) = .~, e(TY, vTY )T(T~W, gTX, h F) (0.4) 

+ 7-(TffV, 9 TY, hH(X,FIx)) 
+ T(E2, H(Z, F]z), h E2 , h H(Z'F'z)) 

- / z  "d(TZ, V TZ, ovTZ)f(vF, hF). 

In [Lo], Lott defined a secondary K-group for flat complex Hermitian vector 

bundles on a C °~ manifold. Lott defined also the direct image (secondary index) 

in his secondary K-group for a C a fibration with compact fibre, and the real 

analytic torsion form is one part of his secondary index. We can consider it as 

a C a analogue of Gillet Sould's arithmetic K-Theory in Arakelov goemetry. In 

[Bu], Bunke shows that Theorem 0.1 actually implies the functoriality of Lott 's 

secondary indices [Lo]. 

Assume now that S is a point. Then we have a submersion 7h: Z -~ Y of 

compact manifolds with fibre X. Let 

dim Z 

(0.5) A(F) = @ (detHi(Z,F)) (-t)~, 
i=0 

dim Z 

)~(H'(X, Fjx)) = @ (det Hi(Y, Hi(x, Fix)))  (-1)~+~ 
i,j=O 

be the determinant of the cohomologies of F, H'(X, Fix ). By [KM], we have a 

canonical nonzero section a • A -1 (H(X, Fix)) Q A(F). 
Let I[ []~,(H(X,FIx)), [] H~(F) be the Ray-Singer metrics on A(H(X, FIx)), 

A(F) associated to the metrics gTY, hU(X,F[x) and gTZ, h F [BZ, Definition 2.2]. 

Let 1[ I]a-I(H(X,Ftx))O~(F) be the corresponding Ray-Singer metric on 

)~-I(H(X, FIx)) ~D A(F). Let T(X, t f )  be the Ray-Singer analytic torsion 

[RS1, Definition 1.6] on the fibre X associated to the metrics gTX h ~. 
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By [BLo, Theorems 2.25 and 3.29], and (1.28), we can reformulate Theorem 

0.1, 

(0.6) log(l[crli)~-,(g(X,Fix))®),(F) ) : .Iv e(T}• V TY) logT(X,  h F) 

1 - 5 / z  ~(TZ, V TZ, ovTZ) Tr[(hF)-IVFhF]. 

If Z is oriented, odd dimensional, and h F is a flat metric, let gTZ = e2gTZ + 
TZ 7r*g TY. Let T~ (Z, h F) be the Ray Singer analytic torsion associated to g~ . In 

[D1], [DM], Dai and Melrose have calculated the asymptotics of Te(Z, h E) as 

e -+ 0. In [LST], Liick, Sehick and Thielmann have generalized it to the case 

that F is unimodular, and that Z is odd or even. In fact, by using [BZ, Theorems 

0.1, 0.2], [Mii], they show their main result [LST, Theorem 0.2] follows from the 

corresponding result on Reidemeister torsion which is essentially a problem of 

finite dimensional linear algebra. 

So the equation (0.6) extends the results of [DM], [LST], to the general case, 

where F is not necessarily unimodular. Furthermore, we do not use the result 

[BZ, Theorem 0.2]. Dai told me that their method also works in this case. 

This paper is organized as follows: In Section 1, we recall the construction 

of the analytic torsion forms of Bismut and Lott [BLo]. In Section 2, we prove 

that the de Rham complex, provided with a suitable filtration, calculates the 

Leray spectral sequence. We also give a derivation of Dai's result on the small 

eigenvalues [D]. In Section 3, we state our main result, Theorem 3.1. In Section 

4, we state seven intermediate results, whose proofs are delayed to Sections 5- 

9. We then prove Theorem 3.1. Sections 5-9 are devoted to the proof of the 

intermediate results which were alluded to before. 

This paper is a revised version of [Ma3]. 

In the whole paper, if A is a Z2-graded algebra, and if a, b C A, then we will 

note [a, b] as the supercommutator of a, b. And if J C End(A), we denote Trs(J)  

as the supertrace of J [BeGeV, §1.3]. 
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comments. 
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1. A n a l y t i c  t o r s i o n  f o r m s  

In this Section, we recall the construction of analytic torsion forms [BLo]. 

This Section is organized as follows. In Section 1.1, we introduce the super- 

connection of Bismut-Lott.  In Section 1.2, we recall the construction of the fiat 

connection on the cohomology bundle of fibers. In Section 1.3, we construct the 

analytic torsion forms. 

1.1 .  SUPERCONNECTION OF B I S M U T - L O T T .  Let 7r: W -+ S be a smooth fiber 

bundle with compact fiber Z of dimension n. Let TZ be the vertical tangent 

bundle of the fiber bundle, and let T*Z be its dual bundle. Let F be a fiat 

complex vector bundle on W and let V F denote its fiat connection. 

Let T H w  be a sub-bundle of T W  such that  

(1.1) T W  = T H w  • TZ. 

Let pTZ denote the projection from T W  to TZ. If U C TS, let U H be the lift 

of U in T H w ,  so that  7r, U H = U. 

Let E = (~n=0 E i be the smooth infinite-dimensional Z-graded vector bundle 

over S whose fiber over s C S is C~(Zs ,  (A(T*Z) Q F)lz~ ). That  is 

(1.2) C~(S, E i) = C~(W, Ai(T*Z) ® F). 

Definition 1.1: For s E Coo(S; E) and U a vector field on S, then the Lie differ- 

ential L u ,  acts on C~(S, E). Set 

(1.3) ~TuES = L u -  s. 

Then V E is a connection on E which preserves the Z-grading. 

If U1, U2 are vector fields on S, put 

(1.4) T(U1, U2) = -PTZ[uH, U H] E C~(W, TZ). 

We denote iT 6 Q2(S, H o m ( E ' ,  E ' - I ) )  to be the 2-form on S which, to vector 

fields U1, U2 on S, assigns the operation of interior multiplication by T(U1, U2) 

on E.  Let d z be exterior differentiation along fibers. We consider d z to be 

an element of C ¢¢ (S, H o m ( E ' ,  E ' + I ) ) .  The exterior differentiation operator d w, 

acting on C~(W, A(T*W) ~) F) ,  has degree 1 and satisfies (dW) 2 = 0. By [BLo, 

Proposition 3.4], we have 

(1.5) d W = d z + V E +iT. 
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So d w is a flat supereonnection of total degree 1 on E. We have 

(1.6) (dZ) 2 = 0 ,  [V E,d  z]=O. 

Let 9 Tz be a metric on TZ. Let h P be a Hermitian metric on F.  Let V F* be 

the adjoint of V E with respect to h E. 

Definition 1.2: Let w(F, h E) be the 1-form on W taking values in self-adjoint 

endomorphisms of F,  

(1.7) w(F, h E) = (hE)-'VEh v. 

Let V E'u be the connection on F,  

1 
(1.8) V F'u = V F + 5~z(F, h F) = (V F + vF*) .  

Let o(TZ) be the orientation bundle of TZ, a flat real line bundle on W. Let 

dvz be the Riemannian volume form on fibers Z associated to the metric gTZ. 
(Here dvz is viewed as a section of An(T'Z) ® o(TZ).) Let ( )A(T*Z)®F be the 

metric on A(T*Z)® F induced by 9 TZ, h E. Let * be the fiberwise Hodge duality 

operator associated to 9 Tz. Then E acquires a Hermitian metric h E such that 

for a, c~' E C ~ (S, E) and s E S, 

(1.9) (C~'C~')hE = f z  <°~A*O/)F = f z  (O~'O~')A(T*Z)®EdVz"" 
s s 

Let V E*, d Z*, (dW) *, (iT)* be the formal adjoint of V E, d z, d w, iT with 

respect to the scalar product (,)h E. Set 

D z = d  z + d  z*, vE, u= ~ ( V E + V E * ) ,  
(1.10) 

w(E,h E ) = V E*-  V E. 

Let Nz be the number operator of E,  i.e., acts by multiplication by k on 

C°°(W, Ak(T*Z) @ F). For u > 0, set 

c "  = .Nz/2aW ,-Nz/2, C" =  -Nz/2(aW)* Nz/L 

(1.11) 1 , 1 ,, 
Cu=-~(C'~ +C~), D~= [(CX-C'~). 

Then C~ ~ is the adjoint of C~ with respect to hE; Cu is a superconnection and 

Du is an odd element of ft(S, End(E)) ,  and 

(1.12) G 2 = - D ] .  
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In calculations we will sometimes assume that S has a Riemannian metric 
gTS and W has the Riemannian metric gTW = gTZ • 7r*g Ts, although all final 

results will be independent of gTS. Let V TW, V Ts denote the corresponding 

Levi-Civita connections on W, S. Put  ~TTZ = pTZ~TTW, a connection on TZ.  
As shown in [B1, Theorem 1.9], V TZ is independent of the choice of gTS. Then 
°V = V Tz ® ~r~V Ts is also a connection on T W .  Let S = V TW - °V. By [B1, 

Theorem 1.9], (S(.)., .}gTw is a tensor independent of gTS. 

Let g~ be a base of TS; set g~ the dual base of T*S. Let e i be an orthonormal 
base of (TZ, gTZ). We define a horizontal 1-form k on W by 

(1.13) k(g~) = - ~ (S(e~)e~,g~}. 
i 

For X E TZ,  let X* E T*Z correspond to X by the metric gTZ. Set 

(1.14) 

Set 

(1.15) 

c(X) = x* A - i x ,  ~(x) = x* A +ix. 

1 
c(T) = ~ E g~ A g~c(T(g~, g~)). 

a,[3 

Let V A(T*z) be the connection on A(T*Z) induced by V r z .  Let V Tz®F'u be 

the connection on A(T*Z)Q F induced by ~ 7A(T*Z), v F ,  u. Then by [BLo, (3.36), 

(3.37)], 

(1.16) D z ~[~ " ,wTZ®Fu IA hF)(ej), = c ~ y j v ~  ' - ~c(ej)w(F, 

VE'~=g~{VTZ®F'~' ~ ) \ ~o + k(g~) , 

w( E, h E) = g" ( (S(ga)ei, ej} c(eJS(ej ) + w( F, hF)(ga) ) . 

By [BLo, Proposition 3.9], we get 

X/~DZ VE,U 1 (1.17) C,  = ~ -  + 2v~C(T). 

Remark that in [Zh, §2c)], Zhang observed that we can obtain this Bismut 

Lott superconnection from his sub-signature operator in the same way as the 

Bismut superconnection is obtained from the Dirac operator. 
Let R TZ be the curvature of V TZ. Set 

(1.18) ~TZ 1 = ~ (~, n ~ j ) ~  ~(~)~(~j). 
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1 .2 .  T H E  FLAT CONNECTION ON THE COHOMOLOGY BUNDLE OF THE FIBERS. 

Let H*(Z, FIz ) fr~dim Z r4i/7~ = ~aJi=O ~. ~ ,  FIZ ) be the Z-graded vector bundle over S whose 

fiber over s E S is the cohomology H(Zs, Ffzs) of the sheaf of locally fiat sections 
of F on Z~. By [BLo, §3 (f)], the fiat superconnection d w induces a canonical 

fiat connection V H(z'FIz) on H*(Z, Fjz) which preserves the Z-grading. The 
connection v H(Z'FIz) does not depend on the choice of T H M, and is the canonical 

flat connection on H°(Z, FIz ). 
By Hodge theory, there is an isomorphism 

(1.19) H'(Zs, Flzs) ~- Ker(DZ). 

Then there is an isomorphism of smooth Z-graded vector bundles on S 

(1.20) H°(Z, Frz ) ~- Ker(nZ).  

Clearly Ker(D Z) inherits a metric from the scalar product ( )hE. Let hH(Z'g, z) 
be the corresponding metric on H*(Z, FIz ). 

Let P be the orthogonal projection operator from E on Ker(D Z) with respect 

to the Hermitian product (1.9). Set P± = 1 - P .  Let (vH(Z'gtz)) * be the adjoint 

of vH(Z'Ft z) with respect to the Hermitian metric hH(Z'g~ z). Put 

1 (vH(Z,FIz) -[-(vH(Z,FIz)),), (1.21) V H(z'FIz)'u = -~ 

a Hermitian connection on H(Z, Fiz). 
The following result is established in [BLo, Proposition 3.14]. 

PROPOSITION 1.1: The following identities hold: 

( )* VI-I(Z,FIz) = p V  E, vH(Z,FJz) • p V  E*, 
(1.22) 

Frz),hu(z, ,z)) = P (E, hE)P. 

1.3. ANALYTIC TORSION FORMS. Let Pf:  so(m) --+ R denote the Pfaffian. Set 

- RTZ 
(1.23) e(TZ, V Tz) = Pf  [ -~--]  • 

Then e(TZ, V TZ) is an o(TZ) value closed n-form on W which represents the Eu- 

ler class e(TZ) of TZ,  lying in Hn(W, o(TZ)) [BZ, (3.17)]. Of course, e(TZ, ~7 Tz) 
= 0, if n is odd. Put 

n 

(1.24) x(Z) = E ( - 1 ) i r k H i ( Z , R ) ,  )c'(Z,F) = E(-1) i i rkHi(Z,F~z) .  
i=0 i=0 
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Then x(Z) is the Euler characteristic number of TZ. And x(Z), xI(Z,F) are 

locally constant functions on S. 

Let fl(S), t2(W) denote the space of smooth sections of A(T*S), A(T*W). 

Let ~: t~(W) -+ ~(W) (resp. t2(S) --+ ~(S))  be the linear map such that for all 

homogeneous w • i2(W) (resp. ~t(S)), 

(1.25) ~aw = (27ri)-(deg~)/2w. 

Definition 1.3: Let QW be the vector space of real even forms on W. Let QW, O 
be the vector space of real exact even forms on W. 

For a C C, put 

(1.26) 

We have 

(1.27) 

Put  

f(a) -- aexp(a2), g(a) = (1 - 2a)exp(-a) .  

f ' (a)=(l+2a2)exp(a2) .  

1 
(1.28) f (VF ,  h F) = (2iTr)l/2pTr[f(2a(F, hF)) ] e a(W).  

Then f ( V  F, h F) is closed and its de Rham cohomology class is independent of 
h F" 

For any u > 0, the operator Du is a fiberwise-elliptic differential operator. 

Then ](D~) is a fiberwise trace class operator. For u > 0, put 

(1.29) f(C~, h ' )  = (2iTr)~/~p Trs[f(Du)], 

dim Z 
I(vH(Z'F'z)' hH(Z'FIz)) ~- E (--1)q f(vHq(Z'FIz)' hH(Z'FIz))" 

q=0 

Tile following results are proved in [BLo, Theorem 3.16], 

THEOREM 1.1: For any u > 0, the form f(C~, h E) is real, odd, and closed. Its 
de Rham cohomology class is independent of u, THw, gTZ and h g. As u -+ O, 

C' { f ze (TZ ,  VTZ)f (VF,  h F) +O(u) i f d imZ  is even, 
(1.30) f ( u ' h E )  = _ O(x/~) K d i m Z  is odd. 

As u -~ +oc 

(1.31) f(C~u, h E) = f ( V  H(Z'FIz) , h H(Z'FIz) ) + O(1/x/u).  

The following results are proved in [BLo, Theorems 3.20 and 3.21], 



lO 

THEOREM 1.2: 

(1.32) 

As u--+ O, 

(1.33) 

As u --+ +oo 

(1.34) 

Detlnition 1.4: 

X. M A  Isr .  J .  M a t h .  

For any u > 0, the form f ^ (C  ~ hEi is real and even. Moreover, J \ U~ ] 

= ( hE) .  

f^(C'  h E~ = { 1 dimZrk(F)x(Z ) + O(u) i f d i m Z  is even, 
' ~' ' O(v~) i fd imZ is odd. 

f ^ (C  I hE ~= 1 t. Z , u, , ~X(  , F ) + O ( 1 / v ~ ) -  

The analytic torsion form T(THW, gTZ, h E) C f~(S) is given by 

f0 +~  1 / T(THW, gTZ, h g) = - [.f^(C~u,h E) - -~. (Z,F)I'(O) 

(1.35) _ (~ dimZrk(F)x(Z) _ ~ x , ( Z , f ) ) f , ( i @ ) ]  du " 

The following results are proved in [BLo, Theorem 3.23]. 

THEOREM 1.3: The form T(THW, gTZ, h F) is even and real. Moreover, 
(1.36) 

dT(THW, gTZ, h F) = f e(TZ, vTZ) f (V  F, h F) - f ( V  It(z'Flz,, hH(Z'Flz)). 
2Z 

2. L e r a y  s p e c t r a l  s e q u e n c e  

This Section is organized as follows. In Section 2.1, we prove that  the de Rham 

complex, provided with a suitable filtration, calculates the Leray spectral se- 

quence. In Section 2.2, by following [BerB, §6], we give a derivation of Dai's 

result on the small eigenvalues [D]. 

2.1. DE RHAM COMPLEX. Let rrl: Z -+ Y be a fibration of compact manifolds 

with compact fibre X. Let F be a fiat complex vector bundle on Z. 

As in [BerB, (1.3)], [GrH, p. 464], let 

(2.1) A(T*Z) = F°(A(T*Z)) D FI(A(T*Z)) D. . .  D FdimY+I(A(T*Z)) = {0} 

be the standard filtration of A(T*Z). In fact FPAq(T*Z) are the forms which can 

be written as a finite sum of forms of the shape w A 7r*rl for co E Aq-k(T*Z), ~] G 
Ak(T*Y) for some k _> p. The filtration (2.1) induces a corresponding filtration 
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of the complex (Ft(Z, F),  d F) such that FPFt(Z, F) = C ~ (Z, FPA(T*Z) ® F). We 

also get a corresponding filtration on H°(Z, F). Set 

FPH°(Z'F) Gr" H°(Z,F) : 
(2.2) GrP H ' ( Z , F ) =  Fp+IH.(Z,F),  

dim Y 

Gr p H°(Z,F).  
p=O 

Proo~ Let Doo(Z) be the sheaf of C °~ sections of A(T*Z) on Z. Then D~  

is R-flat. Following the proof of [Ma2, §2(a)], by exchanging anti-holomorphic 

cotangent bundle by cotangent bundle in our context, we get Theorem 2.1. | 

2.2. SMALL EIGENVALUES. In this part, we fix the sub-bundle THz  of TZ as 

in (1.1). Let T] be the tensor defined in (1.4) for 7q: Z -+ Y. Let Nx be the 

number operator on ~(X, Fix ). Let va(X'Fj x) be the connection on Ft(X, Fix ) 
as in (1.3). Set 

(2.6) d H = va(x'F[ x), d z = TNxdZT -Nx. 

For b E Y, let (Ft(Xb, FIXb) , d x) be the relative de Rham complex of smooth 

sections of (A(T*X)QF)Ixb. The Ft(Xb, Flxb)'s will be considered as the fibers of 

an infinite dimensional vector bundle over Y, whose smooth sections are identified 

with the smooth sections of A(T*X) ® F on Z. Let Ft'(Y, Ft'(X, Fix)) be the 

vector space of smooth sections of A(T*Y) (9 Ft'(X, FIX ) on Y. Then we have 

(2.3) fifO:< Ft'(X, FIx)) ~_ ft '(Z, F,z). 

Let (Er, d,.) be the spectral sequence associated to the filtration (2.1) on the 

filtered complex (Ft(Z, F),  d F) [GrH, §3.5]. Then, as in [BerB, §1 (a)], we get 

(2.4) (Eo "°, do) = (Ft'(Z, a ' (X ,  Fix)) , dX), 

(E~ '°, d]) = (Ft'(]:', H(X, Fix)), dY), 

'q : H q ( X ,  Fix) ) .  

And E2 is a finite dimensional Z-graded vector space. More generally, for any 

r _> 0, E~+I is the cohomology of the complex (Er, dr). And for r > d imZ,  

(2.5) (E~'", dr) = (Gr" H'(Z,  F), 0). 

By [Grot, Theorem 3.7.3], there is a functor of the Leray spectral sequence 
associated to the fibration ~r]: Z -+ Y. 

THEOREM 2.1: (Er, dr) (r ~_ 2) calculates the Leray spectral sequence. 
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Let gTX,gTg be metrics on T X ,  T Y .  Let ( )1 be the product on ~2(Z,F) 
defined in (1.9) with respect to gTX ~ • TY h F ~) 1rig , on TZ, F. Let d z*, d z*, d x*, 

d H*, i* be the formal adjoints of d z ,  d z, d x dH, @1 with respect to ( )1 on Ta 
f~(Z, F).  Let {ft} be an orthonormal basis of (TY, gTV), and {fl} be its dual 

basis. Then 

1 ft i* 1 (2.7) i T , = - ~ E f k A  A iT~(fkJ,), T , = - ~ - ~ i f k A i f ,  A (T l ( f k ,  fl)) *. 
k,l k,l 

Definition 2.1: Set 

(2.8) D x = d x* + d X, D H = d H* + d H. 

Now, we define a sequence of Hermitian subspaces E'T of E = ~(Z,  F),  E = 

E~ D E~ D .-.  D E '  r D . . .  such that 

(2.9) ' ' dr).  (Er, 

By (2.3) and (2.4), set 

(2.10) E~ = Eo ---- E. 

I I I Suppose that we have constructed E r, (r < r). As E r -~ Er,  the operator dr acts 

on E~. Let d* be the adjoint of dr with respect to the metric on E~. Set 

* / 
(2.11) D~ = dT + d~, E'r+ 1 = KerD~. 

I I I I Then Er+ 1 C Er, and E~+ t inherits a Hermitian product on E r. Let Pr be the 

orthogonal projection from E on E~. By Hodge theory, 

(2.12) E~.+I ~ Er+l. 

The following result first appeared in [B3]. This is an analogue of [BerB, 

Theorem 6.1]. 

PROPOSITION 2.1: For r E N,  E'  r splits as an orthogonal direct sum E:. = 

~:'P'q with E Ip'q E p'q, P,q~r , - - r  C so that under the identification (E'T, dr) ~- (ET, dr), 

we have E.~. p'q ~- EP'% For any r E N 

(2 .13)  
E~ = {So E ~(Z,  F), there exist s , , . . . ,  s,.-1 G ~(Z,  F),  such that 

DXso = O, DHso + DXsl  = 0, (iT~ + i~  )So + DH81 + DZs2 = O, 

. . . .  (iT1 + i~)s~_3 + DH sr-2 + DZ s~-i = 0}. 
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If  so E E~, then 

(2.14) D~so = pr(DH s~-I + (iT, + i~)Sr-2). 

Proof." The  proof  is essentially the same as in [BerB, Theo rem 6.1]. The  reader 

can easily prove it by proceeding as in [BerB, Theo rem 6.1]. | 

In the sequence, we will identify E~ as a subspace of E ,  E = E0 D E1 D . - .  D 

E~ D •. . .  Let p~ be the or thogonal  project ion from E on Er .  Set p~  = 1 - pr.  

For T > 0, set 

1 TX (2.15) gT Tz = r:* g Tv • ~ g  • 

Let D Z be the opera to r  defined in (1.10) with respect  to g~Z, h r. Set 

= l(d  + A ~  ) (2.16) 

Then  by (1.5), 

(2.17) A~ ) = TNxDZT-Nx ,  A ~  ) =  (TDX + DH + ~(iTI + T1))" 

By proceeding as in [BerB, Theorem 6.5], we get 

THEOREM 2.2: Foranyr _> 2, A E C, Ira(A) ¢ 0, foranys E Eo, whenT -+ +oc, 

(2.18) (A - Tr-lA(~))-ls  -+ pr(A - ~D~)-lp~s. 

As in [BerB, §6(d)], it follows from Theorem 2.2 tha t  for r _> 2, the eigenvalues 

of A(T °) which are O(1/T ~-1) can be put  in one to one correspondence with the 

corresponding eigenvalues of 1 ~Dr.  

3. Functoriality of  the  analytic torsion form 

In this Section, we s ta te  our main  result. 

This  Section is organized as follows. In Section 3.1, we define some torsion 

forms associated to a complex of fiat vector  bundles. In Section 3.2, we announce 

our principal  Theorem.  

We use the nota t ion  of Sections 1 and 2. 

3.1.  TORSION FORM OF A FLAT COMPLEX. Let  W be a C ~ manifold.  Let  

(3.1) (E ,v ) :  0 --+ E ° 4 E 1 4 . . .  4 E n ~ 0 
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be a flat complex of complex vector bundles on W. That  is, V E trx~ x'TE~ is x.Mi=0 - -  
a flat connection on E = ~ )~0  Ei and v is a flat chain map, where 

(3.2) (vE)  2 = 0 ,  v 2 = 0 ,  V E v = O .  

Put  

(3.3) A' = v + V E. 

Then A' is a fiat superconnnection of total degree 1. By [BLo, §2(a)], the coho- 

mology H(E,  v) of the complex is a vector bundle on W, and let ~TH(E,v) be the 

flat connection on H(E,  v) induced by V E. 

Let F i = v(E~-l) ,  G i -- Ker(vlE~). Then F i, G i are flat complex vector bundles 

on W. We have the following exact sequence of flat vector bundles on W: 

(3.4) 0 --+ G i -+ E i Z~ Fi+l __4 O, 0 -4 F i --+ G i --+ Hi(E,  v) --+ O. 

Let h E -- ~ ) h  E' , h H be Hermitian metrics on E -- ~ ) E  ~, H(E ,  v). Let h F~, 

h c~ be the metrics on F i, G i induced by h E~. Set 

n 

(3.5) f ( V  E, h E) = E ( - 1 ) i f ( V  E' , hE'), 
i=0 

n 

f (vH(E,v)  h H) = E ( - - 1 ) i f ( v H ' ( E , v ) h H ) .  
i=0  

Let T(A', h E~) (resp. T(A' ,  hC~), T (A ' ,hE) )  be the torsion form defined in 

[BLo, Definition 2.20] associated to the first line of (3.4) (resp. the second line of 

(3.4), (3.1)). 

We will say that the flat Hermitian complex (E, X ,  h E, h H) splits if there exist 

flat Hermitian vector bundles (F i, V F' , h f~) such that (E, v) is the complex 

0 --4 F ° ~ H ° Id_~o F0 • F 1 ® H i ( E ,  v) Id_~l F1 • F 2 ® H2(E,  v) --+... 

-+ F n-2 ~]~ F n-1 • g n - l ( E , v )  Id(_~-i F n _  1 ~) H n ( E , v  ) ~ O. 

And for 0 < i < n, E i = F i-1 ® F i ® Hi(E,  v) (F  -1 -- F n = 0) is equipped with 

the metric h Ei = h F'-I  ~) h F~ ~ h Hi. 

LEMMA 3.1: Let TI ( X , h E, h H) be a real even form on W,  verifying the following 

conditions: 

(a) The following identity holds, 

(3 .6 )  dT ' (A ' ,  h E, h H) = f ( V  E, h E) - f ( V  H(E'v) , hH). 
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(b) I f  W ~ is a smooth manifold and a: W' -+ W is a smooth map, then 

(3.7) T' (a  *A', a *h E, a *h H) = a *T'(A',  h E, hH). 

(c) i f ( E ,  A', h E, h H) splits, then T'(A' ,  h E) = O. 
(d) The form T~(A ~, h E, h H) depends smoothly on A ~ and h E. 

Then 
n 

(3.8) T' (A ' ,hE,  h H) = E ( - - 1 ) i ( T ( A ' , h  E~) +T(A ' ,ha~) )  in QW/QW, O. 
i=0  

Proof." By proceeding as in the proof of [BLo, Theorem A1.2], we get (3.8). 
| 

By Lemma 3.1, we get 

T~ 

T ( A ' , h  E) = E ( - 1 ) i ( T ( A ' , h  E') + T ( A ' , h a ' ) )  in QW /QW, O. (3.9) 
i=0  

Let (E, V E) be a flat complex vector bundle on W. Let 0 C E ° C -. • C E n = 
E be a filtration of E such that  V.E(E i) C E i. Let Gr i E = E i / E  i-1. Then we 

have a flat complex of complex vector bundles: 

(3.10) Fi: 0 -+ E ~ ~ E i+1 -~ Gr i+1 E ~ 0. 

Let h E, h GrE -- (~i hGriE be Hernfitian metrics on E, G r E  = (~i Gr i E.  Let h El 

be the metric on E i induced by h E. Let h F* = h E*-I @h E~ @h Gr~E be the metric 

on F i = E i-1 ® E i ® GriE. Let T(v + V F~, h v~) be the form on W defined by 

[BLo, Definition 2.20] associated to (3.10). 

The torsion form of the filtered flat complex vector bundle E is 

n--1 

(3.11) T(E,  G r E ,  h E, hcrE) = E T(v  + V f '  , hg'). 
i-=0 

3.2. FUNCTORIALITY OF ANALYTIC TORSION FORM. Let W, V,S be smooth 

manifolds. Let 7rl: W -+ V, 7r2: V --+ S be smooth fibrations of manifolds with 

compact fibre X, Y. Then ~r3 = 7r2 o 7r1: W -+ S is a smooth fibration with 

compact fiber Z with dim Z = n. Let (F, V F) be a fiat complex vector bundle 

over W. Then we have the diagram of smooth fibrations: 

X > Z  > W  

Y > V  " S  

Definition 3.1: 
defined by 
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¢~dimX Hi(X, FIx), H.(Z, FIz), H.(Y,H°(X, FIx)) be the Let H°(X, FIX ) = ~a,,~=o 
Z-graded vector bundles over V, S, S whose fibers over a E V, s E S are the 

cohomologies H°(Xa, FIXo) , H'(Z~, FIZz), H'(Ys, H°(X, FIX)) of the sheaf of 

locally flat sections of F,  F,  H(X, FIx) on X~, Z~, Y~. 

Let THW, TffV, THW be sub-bundles of TW, TV, TW with respect to 

71"1, 71"2, 71"3 as in (1.1). Let E be the smooth infinite-dimensional Z-graded vector 

bundle over S whose fiber over s E S is C°°(Z~, (A(T*Z) ® F)lz~ ). For s E S, let 

(Er,s, dr,~) be the Leray spectral sequence with respect to lr1: Zs --+ Y~, F.  

PROPOSITION 3.1: There a re / ]a t  complex vector bundles E~,q (r >_ 2,p, q C N ), 
and dr: E ff'q -+ Er p - r ' q+ l - r  such that the fiber of complex (Er = ~p,q E p'q, dr) 

over s E S is the Leray spectral sequence ( Er,8 = (~p,q EPr,'qs , dr). 

Proof: By Proposition 1.1, d w is a superconnection on E,  and dWFPE C FPE; 
here FPE is the filtration in Section 2.1. 

At first, E p'q = HP(~; Ha(x, Fix))(p, q > 0) are flat vector bundles on S. If 

E p'q (p, q C N, r _> 2) are flat vector bundles, then d W induces a flat supereon- 

nection on Er,  and Er+l  is the cohomology of (Er, dr). By [BLo, §2(a)], EP:~I 

are fiat vector bundles on S. Now by recurrence, the proof of our Proposition is 

completed. | 

By [BLo, §2(a)], there is also a canonical connection V E" = ~p,q ~,E~,q on 

Er  = ~p ,q  E p'q induced by d w. 
Let gTZ,gTX,gTY be metrics on TZ, TX, TY. Let h F be a Hermitian metric 

on F.  
Let hH(X'FI x), h H(Z'FIz), h H(Y'H(X'FIx)) be the L2-metrics on H°(X, FIX), 

H*(Z,F]z), H*(Y,H*(X, FIX)) with respect to gTX,hF; gTZ, hF and 

gTY, hH(X,Vlx) defined in Section 1.2. 

Let V Tx, V TY, V Tz be the connections on (TX, gTX), (TY, 9TY), (TZ, gTZ) 
defined in Section 1.1. Let THz = THw M TZ. Let 7c~V TY be the connection 

on THz ~-- 7r~TY induced by ~TY. Then °vTZ = rc~V TY ¢~ V Tx is a con- 

nection on TZ = TH Z ® TX which preserves the metric 7r~g ry • gTX. Let 

~(TZ, V Tz, °vTZ)  be the Chern-Simons n -  1 forms on Z with values in o(TZ) 

such that  

(3.12) d'~(TZ, ~ 7TZ, ° v T Z )  ~- e(TZ, °vTZ)  -- e(TZ, vTZ). 

Let T(THW, g Tx, hF), T(Tff V, g TY, hH(X'FIx )), T(THW, g Tz, h F) be the an- 

alytic torsion forms corresponding to 7rl, 7r2, ~r3. Let h E2 be the metric on E2 
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induced by h H(Y'H(X'FIx)). Let h E~ (r > 3) be the L 2 metric on Er as in Section 

2.2. Set 

(3.13) T( H ( Z, Flz ), E~, h H(Z'FIz) , h E~ ) 
dim Z 

: E (-1)kT(Hk(Z' FIz)' OP+q=kE~q' hH{Z'Ftz)' hE°°)" 
k=0 

Recall that for r _> 2, dr is induced by d z. 
superconnection of total degree 1 on Er. 

Definition 3.2: Set 

By (1.6), dr + V E~ is a flat 

o o  

(3.14) T(E2, H(Z, Flz), h E2 , h H(z'F'z)) = E T(dr + VEr, h E~, h EN+̀  ) 
r = 2  

- T(H(Z, Fiz), E~, h H(z'glz), hE~). 

In fact, by [BLo, Theorem 2.24], T(., .) C QS/QS,O doesn't depend on the choice 

of h En (r >_ 3) on Er. 

The purpose of this paper is to establish the following result, 

THEOREM 3.1: The following identity holds in QS /QS,O, 

(3.15) 7"(T3"W, hF) = f .  e(TV, V Y)7"(T W, gTx, hF) 

+T(THV, y Tv, h g(x'g'x)) + T(E2, H(Z, Fiz), h E2 , h H(Z'FIz) ) 

-- /Z ~(T Z, V TZ, ovTZ) f (vF, hF). 

Remark 3.t: By [BLo, Theorem 3.24], to prove Theorem 3.1, we only need to 
prove it for a particular choice of THw, THv, THw,  and gTZ, gTX, sTY. So we 

may, and we will, suppose that 

(3.16) T~"W C T~"W, gTZ = gTX ~ ~gTV. 

4. A proof  of  Theorem 3.1 

In this Section, we prove our main result, stated as Theorem 3.1, when gTZ T H w  
are given by (3.16). 

This Section is organized as follows. In Section 4.1, we introduce a 1-form on 

R~_ × R~_. In Section 4.2, we state seven intermediate results which we need for 

the proof of Theorem 3.1, whose proofs are delayed to Sections 5 9. In Section 

4.3, we prove Theorem 3.1. 
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Here, we use the assumptions and notation of Sections 1 and 3.2. Recall that  

f ,  g are the functions defined in (1.26). Recall also [a, b] is the supercommutator 

of a, b. 

4.1. A FUNDAMENTAL 1-FORM. Recall that T H z  = T ( W  N TZ. Then we 

have the identification of smooth vector bundles over W, 

(4.1) TZ ~- T X  ® THz,  T H z  ~_ 7r~TY. 

This identification determines an identification of Z-graded bundles of algebra 

(4.2) A(T*Z) = A(T*Y)6)A(T*X). 

Let Nx,  Ny, Nz  be the number operators on A(T*X), A(T*Y), A(T*Z). Then 

N x , N v  act naturally on A(T*Z). Of course, Nz = Nx  + Ny. 

Definition 4.1: For T _> 1, set 

(4.3) g~Z = ~sgl TX ® 7r~gTY. 

Let h E = (,)T be the scalar product on E = f~(Z, F)  associated to gTZ, h F 
"~' "~" "~ D wE dZ., (ZT3)T, *T be the defined as in (1.9). Let u3,u,T, W3,~,T, W3,~,T, 3,~,T,V , " * 

operators defined in Section 1.1 with respect to (~ra, (,)T)" Let T1,7'2, Ta be the 
tensors defined in (1.4) with respect to (~'1, THw),  (7r2, THv),  (7r3, T3Hw). 

Definition 4.2: Let au,T be the 1-form with values in QS on R~_ x R~_, 

du O*T , 
(4.4) (~u,T---- u ~ T r s  [Nzf'(D3,~2,T)] + dT~Tr~ [~ *T 1 - ~ - f  (D3,uLT)]. 

LEMMA 4,1: We have 

0 --It [r'~tt --10*T ] 0 t 
(4.5) 0-T(J'3,u,T = [IJ3,u,T, *T -0T-J' ~-~C3,u, T = O. 

Proof: By Definition, for Sl, s2 E C°°(S,E), we have 

(4.6) (VT E* 81,82)T : (81, V E 82)T. 

Now, we differentiate (4.6) in the variable T; we get 

/ 0 E. (4.7) ~ - ~ V T  81,82)T /*  -IO*T''E* 8 \ = / ' - 1 0 * T  ~E82}T +\ T o r  VT 2 / T  \ T • 

So we obtain 

(4.8) ~ VT = o r  " 
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In the same way, we have 

(4.9) = [d.*, -~( iT . )T  = " * , ,T -~-J- 

By (1.11), (4.8) and (4.9), we get (4.5). | 

T H E O R E M  4 . 1  : W e  have the following identity, 

du,TCtu, T _ l d u d T . O  {dTrs [Nzg(_D~, , + ~,r." ._ ,O*T = ~. r '-.,.~3,,,,.,~, r -o-y]),] 

(4.10) 

Proof." 
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o,~)] 
+dTrs [[CJ,~. T, NZ]g(--D],~, T + b *Trl -~-~ - J }b=O" 

By (1.11) and (4.5), we know that 

0 

0 

O Tr. [Nzg ( -D~ , . .T  + b[Cj,~,,,T, O ,, =--Oh ~ c ~ ' u " ~ ] ) ] b = o  

(4.11) + ~-~ Tr. [[Cj,. .T, Nzg( -O~ , . .  3. + b Ca'..T)]]b=O 

o , . o,.~] 
- Ob Tr. [[C3:•.T , [C~,~.T , Nz]]g(-D3, . ,T  + b *T' o r  "J b=o 

0 [ [Ct  ! ! 2 0 * T  
+ ~ Tr. [t 3,~',w, [C3,~&T, Nz]g(-D3,u.,w + b *T 10-T-)]] b=o 

+ + o . '  , , 

Moreover, by (1.5) and (1.11), we know that 

, 0 t 0 . 
[C3,.,& T, Nz] = -u~C'3,,~.,T, [Ca',~.,T, Nz] = 'u-~uC'3,.. T. 

From (1.11) and the above equation, we get 

t tl tt ! 0 2 
(4.12) [C3,~.T, [C3,..T, Nz]] - [C3,..T, [C3,u.,r, Nz]] = --uND3,~,.T, 

I I t  I /  I 2 [C3,.',T, [C;,.',T, Nz]] + [C3, u.,T, [C'3,.',T, Nz]] = --[Da,.,,T, Nz]. 

By using (4.5), we get 
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By (4.3), we know [Nz, ,~I0.TI OTJ = 0. By (1.26) and (4.12), 

0 [ ,, , 2 _ 0 , r ) ]  
- 0--b Trs [C~,~,T, [Ca,~,T, Nz]]g(-Da,u%r + b *r 1 ~ j b=0 

_ o, )1 =120ob Trs [[Da,u~ W, NzIg(-D~,.~,T + b *T' OT J b=O 

1 0 0 2 2 0* r ) l  
-- [(~uDa,u2,T)g(--D3,uLT + b*T 1 or  Jb=O (4.13) ~ u ~  Trs 

= - 5 1 T r ~  [ *T1 -~-[0*T'Nz, g(-D2,uLT)]] 

1 O*T 0 , D2  ~ ,] + -~Wr~ [ ,7.1 --~ Su~-  3,~ ,rq 
1 0 O*T , ~-2 ,1 1 Trs [[Nz, --10*T 2 -~71-~-~ Tr s -.~-g(--1J3,u2,r)] =--  --2 *r -"~]g(--O3,u2,r)] q- [*r 1 

1 0 O * r  . 2 1 =5~N T,;~ [ ,r ~ --~g(--D3,~,2 r)]. 

By (1.11) and D3,u2,T is an element of f~(S, End(E)),  we know that 

O*T Trs [[C;tu2 T,[C3,u2 T, NZ]g(--D2,u',T -'[-D,T1--~ - )]] 

--dTrs [[C~,~2,r, Nz]g(-D~,~2,T + b :~T 10*T]] 
OT "J' 

brC" *~I ~T 

By (4.11) and (4.13), we get Theorem 4.1. II 

Take e, A, T, 0 < e < 1 < A < +oc, 1 < To < +exp. Let P = Fe,A,To be the 
oriented contour in R~_ z R~_ 

A 

r2 

. . . .  F4~ 

l To o "~ 
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The contour F consists of four oriented pieces F1 . . . .  , F4 indicated above. Also 

F bounds an oriented rectangular domain A ~. For 1 < k < 4, set 

(4.14) 1 o -- 
J l '  k 

Put  

(4.15) 

0 ° : -(27ri) -1/2 ,u~-~ Tr~ Nzg(-D~,u~,T + b[C;'~:T ,,7.10.T1)]. OT ~'1 

, D23,u2,T -- O*T)]oT "J }b=O dudT" + Trs [[C3,u2.T, Nz]g(- + b *T 1 

THEOREM 4.2: The following identity holds, 
4 

(4.16) E I°  = dO°" 
k = l  

Prooi~ This follows from Theorem 4.1. | 

4.2. SEVEN INTERMEDIATE RESULTS. Now, we state without proof seven in- 

termediate results, which will play an essential role in the proof of Theorem 3.1. 

The proofs of these results are delayed to Sections 5 9. 

In the sequence, we will assume for simplicity that  S is compact. If  S is 

non-compact, the various constants C > 0 depend explicitly on the compact set 

K C S on which the given estimate is valid. 
k Let Z = [-J~=l Zi be the decomposition of the connected components of Z. 

Let Yi = 7h(Zi). Let .k(X), x(Yi),)~(Zi),)i(Z) be Euler numbers of the fibers 

X, Y/, Zi, Z. Then ~:(X) is locally constant function on Y. We have 

(4.17) ~(Zi) : ~(X)~(]~]). 

In the following, we will also write \ ( Z )  : ~ i  x(X)z(Vi)  as x(X)x(Y), etc. 

Let e{,fl be orthonormal bases of (TX, gTX), (T}:,gTY). Then {eT,a} : 
{Tei, fl} is the orthonormal base of (TZ, g~Z). By [BZ, Proposition 4.15], (1.14), 

_ ( _ 1 0  eT, O.T_ 1 (gTZ) (-~gT )eT,a, $T1 OT 2 / g~Z 
(4.18) 

1 E 1 (2Nx - d imX) .  = = 

i 

Let C1,~, DI,~,C2,~,D2,u be the operators defined in (1.11) with respect to 

(~rl,THW, gTX), (Tr2,THV, gTV). Let h H(z'F'~) be the L2-metric on H(Z, FIz ) 
with respect to gTZ, h F defined in Section 1.2. 
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THEOREM 4.3: (i) For any u > O, 

(4.19) lim ~Trs[Nzf'(D3,u,T)] =~Trs[Nzf '(D2,u)].  
T--++oc 

(ii) For any u > 0, there exist C, 5 > 0 such that for T >_ 1, 

r,-t OCT tlt'n ~] 1 Tr [ ] _< C (4.20) ~Tr~ [ T - ~ - J  t ~ 3 , ~ , T ) ] - - ~  ~ [(2Nx-dimX)f '(D2,~)j  T~+l. 

(iii) For 0 < u~ < u2 < +c~ fixed, there exists C > 0 such that for u E [Ul, u2], 
T>_I, 

Nzf'(D3,~ T) , ]<c. (4.21) 

Set 

(4.22) 

THEOREM 4.4: 
(4.23) 

Ftf = ~ l+°° f , (~_ )d t  ~01 dt -'~-+ [ f ' ( 8 )  - 1] T .  

We have the following identity, 

lim ~ f + ~  {ly)Tr~[Nzf'(D3,u,T)] - 1  ' Z F ~du 
T--++c~ ( J l  

- Z ( r -  1)[Trs[NzlE~ ] - Trs[Nz[E~+l]] logT} 
r>2 

I r, / - E T(d~ + ~7Er' hE~' hE'+l) + 2 f l  Trs[NzIE2] - 
r>2 

THEOREM 4.5: We have the following identity in QS/QS,O, 

£+~1~{qo Tr s [(2Nx - dimX) f ' (~w(H(Z ,  Fiz),h~(Z'flz))) ] 

(4.24) _ ~Tr~ [(2Nx - dimX)f'(~a:(Eoo, hE~))]}d--~ 

= - T(H(Z, FIz), E~,  h H(z'FIz), hem). 

THEOREM 4.6: For any T _> 1, 

(4.25) 
= _ f y  1 dimXx:(X) x(Y) rk(F). 2 e(TV, vTV)~ Tr~[Nxff(D1,T2)] - 

T 
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Let V TZ be the connection on (TZ, g TZ) defined in Section 1.1, and let R TZ 
be the curvature of V Tz. 

Put  W W x R* and S S x R ~ .  Define ~3: W --+ S b y  ~3(x,T) = 
A A 

(~r3(x), T). Let p be the projection W --+ W and let p~ be the projection W --+ 

Let Z be the fiber of ~3. Then T Z  = p*TZ. Let gT~ be the metric on T Z  

which coincides with gTZ over W x {T}. Put  T i f f  = p*'rHw.3 " @ p'*TR*. Let 

V T2 be the connection on T Z  defined in Section 1.1. By [B4, Theorem 1.1], we 

get 

(~___~ 1~ T z ' - I  0 T z '  (4.26) V T2 • p*V Tz +dT + ~tgT ) -~gT )" 

Then V w~ preserves the metric gr2. The curvature R w~ of ~TZ is given by 

= 1 [vTZ ~ T Z , - 1  0 TZ] (4.27) RTZ p" RTZ + dT ( o~ vTZ - -~ [ r , ' gr ) ~-~ gT J)-  

Definition 4.3: Set (cf. [BZ, Definition 4.19]) 

(4.28) 
0 [ I { , T Z  ( 0  1 0 TZ] FT(TZ) = ~-~ Pf  + b _ _  VTT Z _ [T..~TZ , TZ,--1 ]]] 

By a standard argument in Chern-Weil theory, we know that 

O g ( T Z  ' TZ TZ (4.29) v ,  , ) : 

THEOREM 4.7: The following identities hold, 

(4.30) "~T(TZ) = O(1/T ~) when T -+ +oc, 

f l  °° ~T(TZ)dT = "~(TZ, in QW /QW, O. V TZ,  0vTZ ) 

THEOREM 4.8: There exists C > 0 such that for ¢ C]0, 1], e _< T <_ 1, 

(4.31) ~Trs [ 'T)~ ~('T/~)f ' (D3,~2,T/¢)]--2/z~T/~(TZ)f(VF'hF)<--  C. 

THEOREM 4.9: There exist 6 E]0, 1], C > 0 such that for e C]0, 1], T E 1, 
(4.32) 

[ }L,T~ ~ ~0 (,T/~)f,(D3,~T/~)I-. _ 1 Tr ~Tr~ 

C < - -  
- T I + ~  , 
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4.3. PROOF OF THEOREM 3.1. At first, we study individually each I ° 

(1 _< k _< 4), by making in succession A --+ +oc, To -+ +ec,  ¢ -+ 0. By using 

(1.33) and (5.4), the above seven intermediate results, and proceeding as in 

[BerB, §4(c)], [Mal, §4(c)], we get 

(4.33) 
o o  

13 H TY hH(X,F,x)) = - T(T~ V, g , - ~ T(dr + V E", h ¢~, h E"+') 
r--~2 

1F, 1 + _ + ~ ${x(Y)[~dimYx(X)rk(F) x'(X,  F)] Trs[NzlE~]}, 

13 =T(H(Z, Fiz), E~, h H(z'Fjz), h EW), 
1 , 1 I33 =T(T3HW, gTZ, h F) + ~F${ - ~ dimZx(Z) rk(F) + x'(Z, F )} ,  

= - £ e(TY, VrY)T(TluW, grx, h F) 

-b .fz e(TZ, V TZ, ovTZ)I(vF, h F) 

1F' / 1 dimXg(X)x(Y) rk(F) - x(Y)x'(X, F)} .  

Of course, we must study the right term of (4.16). Note that by JR, §22, Theorem 

17], if an E QS,0 is a family of smooth exact forms on S which converge uniformly 

on any compact set K C S to a smooth form a,  then a E QS,O 
By (4.16), 4 o QS,O. ~-~k=l Ik C Now by analysing the diverging terms appear in 

succession A --+ +ec,  To --+ +oc, e -+ 0, as in [BerB, §4(d)], [BG, §9.5], we know 

easily that ~4=113  E QS,0. By (4.33), we get Theorem 3.1. | 

5. Proof  of  Theorems  4.3, 4.4 and 4.7 

This Section is organized as follows. In Section 5.1, we calculate the adiabatic 

limit of some tensors. In Section 5.2, we calculate the asymptotic expansion of the 

superconnection AT when T -~ +ec.  In Section 5.3, we state two intermediate 

results, from which Theorem 4.3 follows easily. In Section 5.4, we prove Theorem 

4.4. The reader who is only interested in the Ray-Singer metric (i.e., formula 

(0.6)) can skip this part, and only uses Section 2.2 to prove Theorem 4.4. In 

Section 5.5, we prove Theorem 4.7. 

We use the assumptions of Section 3.2, and we use the notation of Sections 1, 

3.2 and 4. Recall also that f,g are the functions defined in (1.26). 

5.1. ADIABATIC LIMIT OF SOME TENSORS. In the sequence, ifaT(T E [1, +oc]) 
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is a family of tensors (resp. differential operators), we write that  as T --+ +c~, 

O~ T : 0~oo + O ( 1 / T k ) ,  

if for any compact set K C W and any p E N, there exists C > 0 such that  for 

T _> 1, the sup of the norms of the coefficients of aT -- a ~  and their derivatives 

of order <_ p is dominated by C/T  k. 

We also use the above notation for tensors or differential operators on V, S. 

For U e TS, V 6 TV,  let Uff 6 T3Hw, u H ¢ THV, V H • T H w  be its 

horizontal lifts so that  ~r3,U H = U, 7r2,U H = U, 7rl,V u = V. 
Recall that  V TX, V TY, V Tz are the connections on (TX, gTX), (TY, gTY), 

(TZ, g TZ) defined in Section 1.1. Let T1,T2,T3 be the tensors defined in (1.4) 

with respect to 7rl, lr2, 7r3. Let $1, $2,$3,T be the tensors defined in Section 
1.1 associated to (Trl,THW, gTX), 17r T.HV. ~TY~ 2, 2 ,Y J, (7r3 ,T3HW,gTz). Then for 

ga,gz ¢ TS,  

= T~ H H (5.1) T3(g•,gg) [T2(g~,gz)] H + l(g~ 2 gz,2)" 

By (4.1), we have the identification of vector bundles on W, 

(5.2) T W  = T H w  ® TH z ® TX.  

Let p T X , p T ~ W , P  wnz, p r Z  be the corresponding projections from T W  on 

TX,  T3Hw, TH z,  TZ.  

Let °vTZ = 7r{V TY • V TX be the connection on T Z  ~_ TH z • TX .  Recall 

that  $1 is a 1-form on W with values in the antisymmetric element of End(TW),  

and for X 6 TW,  SI (X)  maps T X  to T H w  (resp. T H w  to TX) .  

Detlnition 5.1: Let A3,~, A* be the 1-forms on W with values in End(TZ)  3,c,a 

defined by: for X • TW, Y, Z • TZ, 

A 3 , ~ ( X ) Y =  p T X { s , ( x ) p T n Z Y } ,  
(5.3) 

<A~,~(X)Y, Z}~TZ = (Y, A3,~(X)Z>g~z. 

THEOREM 5.1: The connection V Tz = °vwz  + A3,~ preserves TX ,  and its 

restriction to T X  is equal to V Tx. We have 

1 (5.4) VT TZ = OvTZ -b A3 c~ - - - A *  
, T 2 3,oo" 

Proo£" On each fiber Z, ~TTTZ is the Levi-Civita connection of (TZ, gTZ). By 

[BCh, (4.14), (4.15)], we get (5.4) along the fibres Z. 
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Now we consider 7r~ffTY,g TX as tensors on TZ = THz  (~ TX,  by extending 
to 0 on the complements. For U E TS, let Lu~ be the Lie derivative operator 
acting on the tensor algebra of TZ. Then for Y (resp. X) C °* section of TY  
(resp. TX),  let Z = yH  + X. By using [B4, (1.5), (1.8)], and [U H, X] E TX,  we 

get 

(5.5) ( Lu~ gTX )(Y H, X) -- Lu~ (gTX (yH, X) ) - gTX ( Lu~ y1H , X) 

- gTX(Y1H ' Lva, X ) 

: - ([ULYl'],x)g x = - 2  (sl(v )YY,x),Tx, 

[U H, yH] ---[U~, y]H + pTX[uH ' yH]. 

By [B4, Theorem 1.1], (5.5), we get 

TZ 1 TZ -1  TZ VT, uaHZ=Lua, Z+-~(gT ) (Lva, g T )(Z) 

1 TY -1 THZ TZ (5.6) --[U H,Z]+-~(g ) P (Lung T )(Z) 

1 + ~ ( g T X ) - I p T X ( L u H g T X ) ( z  ) 

- ( v T Y y ~  H + v T X x  + A3,~(uH)y ff - - -~A~(Uf f )X .  
- u2 J a T ' 

TZ By (5.4), we also get the property of V ~  . The proof of Theorem 5.1 is completed. 

I 

THEOREM 5.2:  (i) For X E TX, Y E TW, Y' E T3HW, 

(5.7) T 2 <S3,T(X)Y, Y')T = (S,(X)Y, Y').  

(ii) For X 6 TY, U E TS, Y 6 TV, 

(5.8) (S3,T(X,~)Yy, U~)T = (S2(X)Y, U ~ ) .  

Proof'. By using (5.4), [B4, (1.5)], and proceeding as in [Mal, (1.28), (1.30)], we 

get Theorem 5.2. Comparing to [Mal, Theorem 1.7], the horizontal space T3HW 
doesn't change here, so the final formula is simpler. I 

5.2 .  ASYMPTOTICS OF THE SUPERCONNECTION A T WHEN T --+ +Co.  Let 
dvx,dvy,dvz  be the Riemannian volume forms on X , Y , Z  with respect to 
gTX,gTY, gTZ. Let ( )A(T*Z)®F be the metric on A(T*Z) ® F induced by 
gTZ, h F. Recall that D x, D H are the operators defined in (2.8) along the fibres 

Z. 
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Definition 5.2: For a E V, s E S, let E~, E0,, (resp. El , , )  be the vector spaces 

of the C °° sections of A(T*Z) @ F on X=, Z, (resp. KerD x on Y,). 

For a E 17, s, s' E E~, put 

(5.9) (s, S')IEo = f .  (s, S')A(T.Z)GF dvx. aN a 

For # E R, s E S, let E"  E ~* be the Sobolev spaces of order # of sections of 0,8~ 1,s  

A(T*Z) @ F, Ker D x on Z~, 1~. 

For a E V, let Pa be the projection from Ea on Ker D x with respect to ( )IE~, 

and let p± = 1 - p. Let ( ) be the Hermitian product on Eo with respect to 

the metrics gTZ, h F as in (1.9). Let E °'± be the orthogonM bundle to E ° in 

(E°,< >). 

Definition 5.3: 

(5.10) 

Then 

(5.11) 

For T >_ 1, set 

Au,T T NX -N~ = C3,u2,T T " , AT = A1,T. 

la*T t = [*7fl~Tg(d2u,T) ] ~oTr, [*T --~-f  (Da,**<T)] ~Tr,  

Let A(T °) (resp. A(T >°)) be the part of AT of degree 0 (resp. > 0) in A(T*S). 

Let TIlTY be the restriction of T1 on TY.  Let v TvTE'~ be the Hermitian connection 

on Eo defined as in (1.10) with respect to gTZ. Let CT('), (resp. c(-), ~'(-)) be the 
Clifford action of TZ on A(T*Z) with respect to gTTZ (resp. gTZ) defined as in 

(1.14). Then by (1.17) and (2.17), 

1 i* (5.12) A ~ ) =  

1 

Let fl, ei be orthonormal bases of (TY, drY), (TX, gTX). Let {ga} be a basis of 

TS. Let kl, k2, ka,r be the horizontal I-forms on W, V, W associated to (rh, gTX), 
(rr2,grr), 0ra,g Tz) defined in (1.13). Let vTTZGF,~ o v r z ® F  ' 0Vrz®e. be the v T 

connections on A(T*Z)®F induced by (V r z ,  VF'~), (°Vrz, vF), (0vTZ, Vu*). 
For U a vector field on S, s E C~°(S, Eo), set 

(5.13) °ruGS = °VrZO~ua~ S, 

~ OvTZ®F'u t~8 = + + 
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Let C be the superconnection on Eo, 

C =- OVE'u + ~D H 1 T 
- 2 1 .  

When T ~ +00, we have 

AT = 1TDX +C + O(1/T). 
L 

(5.14) 

THEOREM 5.3: 

(5.15) 

Proof: By Theorem 5.2, 

(5.16) 

By Theorem 5.1, we get 

(5.17) 

k3,r(g~) = kl(g~) + k2(g~). 

Isr. J. Math. 

TNx x~TTZ®F, uT-Nx O~TZ®F,u 

+ ~-~1 (A3,~(.)f,, ej)gT:, (c(f,)e(ej) - ~(f,)~(ej)) . 

By (5.1), we have 

1 
(5.18) TNXcT(T3(ga,gB))T -Nx = c(T2(g,,gfl)) + -~C(Tl(ga,gfl)). 

By (1.16), (1.17) and (5.16)-(5.18), we get (5.15). | 

THEOREM 5.4: For any T E [1, +c~], the operator pATp is a superconnection on 
El. When T ~ +c~, 

(5.19) pATp = C2,1 + O(1/T). 

Proo~ Let vH(X'FI x)'~ be the connection on (H(X, FIx), h H(X'FIx)) defined by 

(1.21). Let va(X'FI x)'" be the connection on gt(X, FIx ) as in (1.16) corresponding 
to gTX h F. Then by Proposition 1.1, 

(5.20) vH(X,FIx ),u ~_ pV~(X,Fix),Up. 

By using (5.14) and (5.20), we get 

(5.21) pCp = C2A. 

By Theorem 5.3 and (5.21), we get (5.19). | 
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5.3. THE MATRIX STRUCTURE OF A 2. Let ~ 7 A ( T * X )  be the connection on 

A(T*X) induced by V TX. Let R A(T*X) be the curvature of V A(T*X). Let • = 

w(F, hE). Let R g'u be the curvature of V F'~. By (1.7) and (1.8), 

(5.22) RF, u _ 1~2. 
4 

Put  

(5.23) ET = pA2Tp, FT = pA~p ±, 

GT = p-t-A~p, HT = p± A~p L. 

O,_L 
Then we write A~ in matrix form with respect to the splitting E ° = E ° ® E 1 , 

THEOREM 5.5: 

(5.24) 

A~ = [ ET FT ] 
GT HT " 

There exist operators E, F, G, H such that, as T --+ +oc,  

E T = E + O ( 1 / T ) ,  F T = T F + O ( 1 ) ,  

GT = TG + 0(1) ,  HT = T2H + O(T). 

Moreover, 

(5.27) E = peep, F = pQoop ±, 
G = p±Qoop, H = ~p ~..LnX, p 

Let 

(5.25) Q ~  = ~[Dx,C]. 

o,± and Qoo is a smooth family of first order elliptic operators The. Q~(E °) c E, , 
acting along the fibres X,  

1 ~cie~)c(S?,l)[(nA(T.x) + n~,~,,e . , ,  o :Z®F: ,  1 (5.26)Q~ = i  ,~ i ,  J / , l /  - VTl ( e i , f iH ,  l )J  
i,l 

1 E c(ei)ga[ (RA(T'X) + RE'u) e " ovTTZ®F'u ] 
( i , g a , 3 ) - -  V Tl(e.gff, a)J +5 

1 H A 0 T Z @ F , u  
~(ei)~(ftH1)RF'u(ei, It, H) - ~c(fi,1)c(ei)( Vfff, ~)(ei) 

1 ^ H 0 T Z ® F , u  1 a A :  , , . o ~ T Z Q F ,  u~ , , , ,  : 
-- -~c(ei)c(ft,1) ( Ve, kO)(fi,H ) -- ~g e(ei)( Vgo ' w)(ei) 

+ ~c(~,)9"e~(k~(g.)). 
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Proof" By (1.16) and (2.6), we have 

D X :e ~O'-"TZQF'u 1A = c~ i: v ~ ,  - ~ c ( e ~ ) ~ ( e i ) ,  
(5.28) 

D H : ~ H  ~Or'-~ T Z c ~ F , u  1A H H 
= C~,.]i,1) VfiH,1 "~C(fl,1)~(fl,1)" 

By (5.12), (5.28) and Theorem 5.3, the proof is as same as [Mal, Theorem 5.10]. 
| 

By (5.21) and (5.27), we know 

(5.1) C 2 2,t = p(E  - F H - 1 G ) p .  

5.4. T w o  INTERMEDIATE RESULTS. If C is an operator, let Sp(C) be the 

spectrum of C. 

Recall that Dr = dr + d~ is defined in (2.11). For r _> 2, s E S, set SpD~, 8 
(resp. Sp 1)2'>°~ to be the spectrum (resp. the positive spectrum) of Sp D~,~. The - - r , 8  l 

constants cl, c2 > 0 are fixed once and for all such that 

(5.30) U Sp-n2'>°C]4c,,4c2[ur, s and ]0,8c,[D U SpDy'2 = 0. 
r>_2 s E S  
s E S  

Let 3, A C C be the contour in C, 

y A 

C~/4 
) 
X 

Let A1 be the contour in C, 

y/ 
1 

-1 

. . . . . . . . . .  J cl 

A I 

) 

t C2 ) 
X 
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Let 5', A~ be the domains which are bounded by 5, A1. 
By (2.18), for r > 2, the eigenvalues of A(~ ) which are O ( 1 / T  ~-~) can be put  in 

one to one correspondence with the corresponding eigenvalues of 1 ~D~. So there 
exists To > 0 such that  for T > To, 

(5.31 / Sp A(T °)'2 n [0, 2c1[C T2(~_,--------- ~ U T2(i_l  ) . 
i=2 

By [B4, Proposition 9.2], for any u > 0, T > 1, 

(5.32) Sp A 2 Sp(u2A~)'2). u~T 

By (1.26) and (5.32), it is clear that  for u > 0, T > To, 

1 f5 g(u2"~)-~ g(u2A~ .) 

1 /A ~_--~T a~,g(u2A) ,, ~ / 1 / A  g(u2A) Fu(A~)  = F~,(C~,,) = f----C~2,1dA. 

Let Pu,T(X,X ' ) ,Fu(A?r) (x ,x '  ) ( x , x '  • Z~) be the C ~ kernels of the operators 
g(u2A~.), Fu(A  2) calculated with respect to dvz (x ' ) .  

Let ¢u be the map from A(T*S) to A(T*S) defined by 

(5.35) a • A(T*S) -+ u -deg~a  • A(T*S). 

As [Mal, Proposition 5.14], for u > 0, T > 0, we have 

Trs [(2Nx -dimX)g(A2u,T)] = g'u Trs [(2Nx -d imX)g(u2A~. ) ] .  

By proceeding as in [Mal, Theorems 5.19 5.25], we have 

THEOREM 5.6: (i) For m • N, 0 < ul < ue < +ee  fixed, there exists C > 0 
such that  for x, x I • Zs, u • [Ul, u2], T > To, 

01~l+l~'l 
(5.37) sup ~ ~ ,~ ,P~T(X,X ' )  < C. 

al,la I<_m ox  ax  " - 

(5.33) 

Set 

(5.34) 
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(ii) For m E N, there exist c > 0, C ~ > 0 such that for x ,x  t C Z~, u >__ uo, 

(5.43) V E" = pr°VEpr. 

So we have 

(5.44) V E~'~ = p~°vE'~p~. 

For u > 0, r > 1, put 

1 
(5.45) C~,~, = V E''~ + -~uDr. 

T>_To, 

01~1+1~'1 I 
(5.38) sup Fu(A2)(x,x') < cexp(-C'u2). 

H,l~'l<m Ox~Oxl~' 

For d e L(E °, Eo°), we denote by IId]l °'° the norm of d with respect to I Io. 

THEOREM 5.7: (i) For 0 < ul < u2 < +co Axed, there exists C > 0 such that 

for u ~ [ul, u2], T > To, 

2 2 I° '°  (5.39) g(u2A~) - pg(u C~,l)p < e/T 1/4. 

(ii) There exist c > 0, C > 0 such that for u >_ Uo, T > To, 

2 IIO'O 
(5.40) Fu(A 2) - pFu(C~,,)p <_ c/T 1/4. 

5.5. PROOF OF THEOREM 4.3. By (4.18), (5.36), (5.37), (5.39), and by pro- 

ceeding as in [BL, §ll(p) and 13(q)], we get Theorem 4.3. 

By (5.38), (5.40), and by proceeding as in [BL, §11(p) and 13(q)], we get the 

following result which will be used in the proof of Theorem 4.4. 

THEOREM 5.8: There exist 5 E]0, 1], C > 0 such that for u >_ uo, T >_ To, 

(5.41) Tr~ [NzFu(A~)]-  Tr~ [NzF~(C~,I)]I <_ C/T ~. 

5.6. PROOF OF THEOREM 4.4. We use the notation in Sections 2.2 and 3.2. 

Recall that (Er, dr)(r >_ 2) is the Leray spectral sequence associated to 

7rt: Z~ --~ Y~ and F.  Let vgr*(r  > 2) be the adjoint of V E~ with respect to 
h EÈ. Let ~ 7E''u 1 E~ rE.*) .  = ~(V + By [BLo, Proposition 2.6], we have 

(5.42) V E~+~ = prVE~pr. 

By recurrence and (1.22), (5.13), we get 
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For r > 2, T >> 1, put 

Pr,T = 1 f (~_  Tr_,A(TO))_XdA, 
(5.46) ~ __~¢c,H=v~} 

P~T = 1 -- ~Jr,r, qr,r = P r , T  - -  Pr+I,T" 

Let ~r,T(X, X'), pr(x, X') (X, X' E Zs, s E S) be the C ~ kernels of the operators 

Pr,T, Pr with respect to dvz(x~). 
To follow [Ma2, §2], the following result is crucial. 

PROPOSITION 5.1: For any m E N, there exists ~ > 0 such that under the norm 
C m, for r >_ 2, T >> 1, we have 

(5.47) Pr,T(X, X') = p~(x, X') + O(1/T6). 

Proof'. By proceeding as in [Ma2, Proposition 2.12], we get (5.47). | 

Let (Tk-IA(TO)~k,T)(X,X'), (Dkpk)(x,x') (x,x '  e Zs, s C S ,k  >_ 2) be the C ~ 

kernels of the operators ~ "~T Pk,T, Dkpk with respect to dvz(x~). By (5.46), 

as in [Ma2, (2.62)], we get 

(5.48) (Tk-xa(~)~k,T)(X, x') = (Dkpk)(X, x') + O(1/T~). 

For u > 0, set 

(5.49) Ar,u,T = AT~-lu,T. 

For 2 < r < n = d imZ,  T _> To, set 

Fr,~,T=I ~Trs [Nz f, g(u2.X)(.X- A~,,,T)-ld'X], 

(5.50) G~,~,T=I¢~Tr~[NzJ£g(.2.X)(.X-A~r,i,T)-'d),] for r _> 1, 

1 Tr Gl,u,oo = ~ i C u ~  s [Nz ~g (u2A) (A-C2 , i ) - l d )q ,  

1 , T r  , . 

Then for 2 < r < n, 

(5.51) F~,u,oo + G~,u,~ =¢pTr8 [Nzg(C~,u) ] . 

By using (5.47) and (5.48), and proceeding as in [Ma2, Theorem 2.19], with 

necessary modification, we get 
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THEOREM 5.9: (i) There exist 5 > O, Cx > O, C > O, To > 0 such that for u >_ 1, 

T > To, 2 < r < n, we have 

C - c l u  
(5.52) ]Fr,~,T- f,.,~,oo[ < ~--ge . 

(ii) There exist forms ar,i,r, bn,i,T (T E [To, +co], 1 < r < n, - dim S < i < 0), 
C ~ on S, such that 

-1 

i = -  dim S 
( 5 . 5 3 )  --1 

Gn'u'T : E bn#,TUi + )~'(Z'F)" 
i= - -  dim S 

When u --~ O, uniformly for T >_ To, we have 

o 
(5.54) Fr,~,T = E a~,i,TUi + O(u) forr  > 2, 

i = -  dim S 

0 

al ,u ,T  = -- E al,i,TU i -k- O(U). 
i----- dim S 

(iii) We have 

[NzIEr] " Trs [NzIE~+I] forr  >_ 2. (5.55) ar,o,c~ Tr s 

There exists 5 > 0 such that for 1 < r < n, when T --~ +oc, we have 

ar,i,T : ar,i,c~ -b O(1/T~) ,  

bn,i,T ---- --an,i,co -k- O ( 1 / T  ~) for i < 0, 
(5.56) 

n 

bn,i,TT-(n-1)i + E ar'i 'TT-(r-1)i = --al,i,T for i < O. 
r=2 

As in [Ma2, (2.106)], for T _> To, we have 

n 

( 5 . 5 7 )  GI,u,T = E Fr,T-~+Xu'T -~- Gn, T-(n-1)u,T" 
r-~2 

By using Theorems 5.8, 5.9 and (5.57), and proceeding as in [Ma2, §2(e), (f)], by 

[BLo, Definition 2.20], we get Theorem 4.4. | 
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5.7. PROOF OF THEOREM 4.7. We use the notation of Section 4.2. Let 

(5.58) '~ 7TZ = T -Nx v T Z T  gX , 'V  T~ = T - g x  v T Z T  Nx • 

35 

Let 'R  TZ be the curvature of 'VT Tz. 

TZ.  By (5.4), 

(5.59) 

Then 'V  T~7 preserves the metric p,gTZ on 

1 t vTZ  = OvTZ + ~(A3 ,~  - A~,~). 

By (4.28), we get 

(5.60) 
UT(TZ ) = 

1 { 0 , w T Z _  1 [ t v T  Z , TZ\- I  0 TZ] 

By (5.59) and (5.60), we get the first equation of (4.30), and we get 

(5.61) 
in QW /QW, O. 

f l  +°~ UT(TZ)dT "~(TZ,' v T Z ,  ! TZ 
= V ~  ) 

: "c(XZ, V TZ, ° v T Z )  

The proof of Theorem 4.7 is completed. | 

6. P r o o f  o f  T h e o r e m  4.5 

We use the notation of Section 3.1. 

Let F = F ° D F 1 D • •. D F n ---- 0 be a filtration of flat vector bundles of F on 

S. For i > 0, set G r i p  -- F~/F i+1. Let h F (resp. h Grg) be Hermitian metrics 

on F ~(resp. Gr F) .  Let h F~ be the metric on F i induced by h E. 

Let G i be the orthogonal sub-bundle of F ~+1 in F i. Let h G~ be the metric 

on G ~ induced by h GriP. Let P c~ be the orthogonal projection from F on G i. 
We denote NH the number operator on G i and Gr F. Let h 'F  -- (~  h C~ be the 

metric on F -- (~  G i. 

Let hT F (T > 1) be a family of metrics on F such that  h F = h r and that  there 

exists 5 > 0, such that  when T --+ +oc,  for sl C F i, s2 C F j, we have 

(6.1) (hTF)_I 0 h~ = T T N H (  2 ( n -  N H ) + O ( I I T a ) )  T - N "  
OT 
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PROPOSITION 6.1: Set 

(6.2) I(hFT, h GrF) : -  ~11A-°° (~ Tr [(hF)-I(~hFT)f/(~F, hF)] 

- - 2 ~ T r [ ~ f / ( v G r F , h G r F ) ] } d T .  

Then 

(6.3) I(h~T, h c~F) = T(F, GrF,  h E, h crF) in QS/QS,O. 

Proof: For t E [0, 1], set 

(6.4) hFT,1 = ~ T-2ihCr~E, hET,t = thE,1 + (1 -- t)hFT . 
i 

By [BLo, (1.24)], as in [BLo, (1.26)], we get 

(6.5) I ( h ~ , h  crF) I(h F h arF~ 
- -  \ T , 1 ,  ] : 

Tr F - 1  0 g F -1 0 F , F 

By (6.1) and (6.4), we also verify that the right term in (6.5) converges. 
The real, even form I~h F h arF~ verifies the following conditions as in [BLo, k T,1, ] 

Theorem A1.1]: 
(a) The following identity holds, 

(6.6) dI(hF,1, h GrF) : f (V F, h F) - f ( V  GrF, hGrF). 

(b) If S' is a smooth manifold and a: S' ~ S is a smooth map, then 

(6.7) I(a*h F o~*h GrF'~ ---- a*I(h~ 1, hGrF) k T,1, / , • 

(c) If (F, h F) -= E~)i(GriF, hGr~F), then I(hF,1, h G~F) = 0. 
(d) I(hF~, h erE) depends smoothly on V F, V crF and h crF. 

Now, we can apply the techniques of the proof of [BLo, Theorem A1.2]; we get 
(6.3) for h E T,I" 

By (6.5) and (6.3) for h F the proof of Proposition 6.1 is completed. | T,1, 

Proof of  Theorem 4.5: Let D Z be the operator defined in (1.10) with respect 
to (7r3, gTZ, hF). Let ( }T be the metric on E0 defined in (1.9) with respect to 
gTTZ , h F. Let PT be the orthogonal projection from E0 on KerDT z -- H(Z,  Fiz ) 

with respect to ( )T" Recall that h H(Z'g'z) is the metric on KerDT z -~ H(Z,  Fiz ) 
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induced by ( )T" Let ~bv be tile orthogonal projection from Eo on ET = Ker A(~ ) 

with respcet to ( ). 

By (2.6) and (4.3), the linear map 

C T = T N x - ½ d i m X :  (E, (  ) r , d Z ) - + ( E , (  ),d z) 

is an identification of Hermitian chain complexes. By (2.17), we know 

(6.8) PT : C T I  p T C T  • 

For a, a I E Eo, we have 

(6.9) 
( PTCt, PTOZ} T = 

I (T)TTN:"a,T)TTNXa' } 
Tdim X 

By (5.31) and (5.46), for n = d imZ,  we have 

(6.10) JST : Pn+I,T" 

Now, by Proposition 5.1, and (6.9), (6.10), as in [Ma2, l(f)], we know the 
metric TdimXh H(z'FIz) on H(Z, FIz ) verifies the condition (6.1). 

(6.11) 

Remark also that by [BLo, Proposition 1.3], 

i 
= x(Z) rkF,  

Trs [f'(~w(E~,hE~°))] = E(-1)v+qdimE~ q= x(Z)  rkF.  
P,q 

By Proposition 6.1 and (6.11), we get Theorem 4.5. | 

7. P r o o f  o f  T h e o r e m  4.6 

This Section is organized as follows. In Section 7.1, we establish a Lichnerowicz 

formula for A2,T/. In Section 7.2, by an argument of [BZ, §4], we can use a 

Getzler rescaling on the operator L ° Then we prove Theorem 4.6. 3,c,T* 

In this Section, we use the assumptions and notation of Sections 4 and 5. 

7.1. A LICHNEROWICZ FORMULA. Recall that we denote ei,fl, ea orthonor- 

mal bases of (TX, gTX), (TY, gTY), (TZ, gTZ), and that we denote e i, f l ,  e a the 

corresponding dual bases. Let g~ be a base of TS and let g~ be the dual base 
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of T*S. Let CT(ea),'cT(ea) be the action of e~ defined by (1.14) with respect to 
(TZ, gTZ). Then for u • R, 

(7.1) 

TNX cT(Te~ + uft)T -gx  = c(ei + uft), TgX~T(Tei + uft)T -Nx = "d(ei + ufl). 

Set 

(7.2) 

Then 

L ° = (TIc) Nx C~ ~, T/E(TI¢) -Nx 2 = Ae,T/~. 3,¢,T , , 

Let P3,¢,T(X, X I) (X, X I C Zs )  be the smooth kernel associated to the operator 
0 g(L3,~,T) calculated with respect to dvz(x'). For b E Ys, set 

(7.4) g~,m(b) = ix. ~oTr, [*TJ~ 0 x)]dvx. (-~--~ *T /, )P3,,,T( X, 

By (7.3), we get 

1 0 2 
(7.5) ~ Trs [*TI~(-~-~*Tle)g(C~,~2,T/E)] = S y  g~,TdVy.  

Recall that  V TX, V TY, V TZ are the connections on (TX, g T X ) ,  ( T Y ,  g T Y ) ,  

(TZ, g Tz) defined in Section 1.1. Let RTX,RTY, RTTZ be the corresponding 

curvatures. Recall also @ = w(F, he), and let R F'~ be the curvature of V F'u. 
#vTTZ~F,u Let v T be the connection on A(T*Z) ® F,  

(7.6) ,wTZ®F,~ TZ®F u - N x  v T = T g x  V T ' T . 

Let ~TY E fl2(V, End(A(T*Y)), ~TZ E f~2(W, End(A(T*Z)) be defined in (1.18) 

with respect to (TY, gTY), (TZ, gTTZ ). Then 

TN x ~TZT_Nx _1  

2 le RTZ4 , \ (7.7) + -~ \ i, T JtlgTX "c(ei)~(ft) + (fZ, R T Z  fm)gTV "c(fl)~d(fm)], 

and define 7¢3,T • ~2(W, End(A(T*Z) ® F)) by 

(7.8) TC3,T = (TNx RTZT -Nx Q IF) -f- (IA(T*Z) ® RF'u). 

Let KT z be the scalar curvature of (TZ, gTX • T2zr~g Tv) along the fibres Z. 
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By using the Lichnerowicz formula [BLo, Theorem 3.11], we get 

(7.9) o T 2 [ , v T Z ® F , u  T 

1 
g 
1 \ 2 

g ~ A g~)  

62 {twTZQF, u 1 
4 ~ ~ / ~ , l ,  + - / : ~ " ~  \ : ~ " \ s ~ T / ~ , - m , g ~ / ~ / ~ . g  ~ 5" 
T 

1 ° A : ] :  
/ 

T 2 I 

£2 

+ -~c(fOc(LOn3,T/~(fl, LO 

T 2 sT 
+ -~-c(ei)c(ej)T~3,T/e(ei  , e j )  -F ~-c (e i )c ( f l )T~3 ,T /e (e i  , f l )  

+ 2 gc~ A c(ei)7~3.T/~(g(~ , ei) + 2g a A c ( f , )T~a ,T / : (g . ,  f , )  

1 T 2 s 2 T 2~ ^ 
+ ~ { ~ V ( e ~ )  ~ + ~ - 9 ( : 0  ~ + vc(~)~(~)[~(~), 9(ej] 

~T~ 2 
+ Tc(ei)'c(h)[~(ei), ~(f/)] + -~c(fl)c(fra)[~(fl), t~(/m)] 

T 2 ^ t T Z ® F , u  
2 c(ei)c(~J( v~/:,~ ~)(ej)  

s T  ^ t T Z ® F , u  
c(f3c(~0(  vr/~, : ,  v)(~i) 

~.2 
t T Z ~ F u  c(]t)c(:~)( VT/~,I,' ~)(f~)} 

2 
T g a ~ ( e i ) / t ~ T Z ® F , u  ...... : ~ / TZOF, u 

( VT/e,9~ w)~ei)  - -~g e ( f l ) (  V T / e , g  a ~ ) ( f l ) "  

7.2. THE GETZLER RESCAmNG ON Y. To calculate the limit as e --4 0 of 

9~,T(b), we proceed as in [BCh, §4]. 

First as in [BCh], by using finite propagation speed of solutions of hyperbolic 

equations [CP, §7.8], [T, §4.4], one can show that the problem calculating the limit 

of 9~,T(b) as e --4 0 is local on Y~. Namely, if bo ~ Y~, we may instead assume 
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that Y~ replaced by (TY)bo = R m°, with 0 E (TY)bo = R m° representing b0, and 

the extended fibration over R mo coincides with the given fibration near 0 ~- bo. 

Let V A(T*X)®F'u be the connection on A(T*X)®F induced by V Tx, V g'~. Let 

V r~A(T*S)~A(T'Y) be the connection on 7r~A(T*S)QA(T*Y) along the fibres Y~, 

which is induced by V A(T*Y). Recall that $2 is the tensor defined in Section 1.1 

associated to (7r2, THv, gTY). Let pTY be the projection from T V  = T Y • T H V  
on TY.  And the application ¢~ is defined in (5.35). 

Definition 7.1: Let I~ 77r~A(T*S)~A(T*Y) be the connection on rr~A(T* S)~A(T*Y)  

along the fibres Y, 

(7.10) tV~. ~A(T*S)~A(T*Y)  ~--V~. ~A(T*S)~A(T*Y)  

H S H H g~.  + <s2(.)S. g~,2> c(S~): + < 2(.)~,~,g~,~>g" A 

Let V e be the connection on 

7r~A(T*S)QA(T*Z) ® F ~- ~t(~A(T*S)6A(T*r))6(A(T*X) ® F) 

along the fibres Z, 

= * * ~ ~ A ( T * X ) ® F , u  (7.11) V e  ?r~,~7~r2h(T S)®A(T*Y) ® 1 + 1 ® . 

For Y E R m°, we lift horizontally the paths t E R~_ --~ tY  into paths t E 

R~_ -+ x, E Zs, with xt E Zw,  dx/dt E THz .  For x0 E X0, we identify TXx, ,  
(~r~A(T*S)SA(T*Z) ® F)~, to TX~o, (Tr~A(T*S)~A(T*Y))boQ(A(T*X) ® F) ,  o 
by parallel transport along the curve t --~ xt E Zs with respect to the connections 
V TX, ¢~VeCZ ~. 

Let F be the connection form of ~ 7~r~A(T*S)~A(T*Y). By using [ABoP, Propo- 

sition 3.7], we see that for Y E T Y  ---- R m°, 

(7.12) Fy  = ('V ~:A(T S)®A(T }'),2)bo(y,.) + O([yi2). 

PROPOSITION 7.1: The following identity holds, 

(7.13) ,v =1 
• 4 

+ ( ( s 2 p T Y s 2  T Y  H H A + V S2)g~,2,gz,2) g~ gZ 
T X  H a -k ((V S2)fl,g~,2)c(ft)g . 

Proof'. If A E End(TY),  the action of A on A(T*Y) is given by 

1 

l,m 
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So we find 

(7.14t = : E t) 4 
l , m  

Now, using the identity 

[c(ft)9 c~, C(fm)g ~] = 26ijg'~9 ~, 

(7.13) follows easily. | 

By [B4, (11.61)], for X, Y E TY and Z, W E TV, 

(vTY'2(X, Y)PTY z, pT Y w )  + ((s2pTY s2)(X, Y)Z, W) 
(7.151 

+((vTYs2)(x, Y)z, w) = (vn',~(z, w)x, Y). 

The operator L°,~,T acts on the vector space Hbo of smooth sections of 

(Tr~A(T*S)QA(T*Y))bo (~(A(T*X) G F)lXbo over R m° x Xbo. 
If S E E, set 

(F~s)(Y,x) = s(2~Tc, z),  for (Y,x) ~ R m° x Xbo, 
(7.16) 

L2,~,T = F~ IL ° , z ,TF~ .  

Definition 7.2: For e > 0, set 

(7.171 "Se(fl) = ~ fl A_2iY,.  

Let L 3 be the operator obtained from the operator L 2 by replacing the 3,~,T 3,s,T 

Clifford variables c(ft) by the variables c~(ft). 
Let P~,~,T((Y, x), (Y', x')) ((Y, x), (Y', x') E (TY)bo x Xbo) be the smooth kernel 

associated to the operator 9(L~,~,T) with respect to dV(Ty)bo (Y')dVXbo (x'). 
If x E Xbo, we can write 

(7.18) 

I (2Nx - dimX)p.3,~,T( (O, x), (0, x)) ---- 

• " ~ (  ae ~ R Q . . . i p ; j l . . . j q ; k l . . . k r  E f f 'A . . .A f f  pAi/j,.--Ai/JqS(fk,).., tJk,.)'.~ ~,T 
l<_il<'"<ip<_m 0 
1 ~--Jl < ""<Jq ~mo 
l<_kl <'"<kr<_m 0 

with Ri'"'iP;Jl""Jq"k'"'k~c,T E 7r~A(T*S)Q End(A(T*X) ® F). 

Set 

(7.19/ 

[ I ( 2 N x  dimX)P2,s,T((O,x),(O,x))] max l,...,mo;;1,...,mo - = R~,r ((o, x), (o, xl).  
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By [BZ, Proposition 4.9], among the monomials in the c(fl),?(fl)'s, only 

c(fl)~d(fl) "" C(fmo)~(fmo) has a nonzero supertrace. Moreover, 

Trs[c(fl)"d(fl)"" C(fmo)~(fmo)] -- (-2) m°. 

By proceeding as in [BL, Proposition 11.2] (consider e/2 as u there), we get 

~Trs [ I  (2Nx-dimX)P3,~,T((O,x) ,(O,x))]  ]m,x 
(7.20) = 2m°(-1) 2 ~Trs (2Nx - dimX)p3,~,T((O,x), (0, x)) . 

We denote V f, the ordinary differential operator on (TY)bo in the direction fl. 

By using Theorems 5.1 and 5.2, (5.17), (7.9) and (7.12)-(7.14), and proceeding 

as in [Mal, §7], we get, when ¢ --+ 0, 

(7.21) L 3 L 3 (Vfl + 1 T Y  )2 ^ T Y  3,e,T -'+ 3,0,T = -- ~ (Rbo Y, fl>g[o Y + Rbo A- C2,T 2 • 

7.3. PROOF OF THEOREM 4.6. Set 

I / D T y y ,  fl>g~o Y )2  ~TY (7.22) H TY (Y) =- -- ( V  f, -4- -~ \,  %0 , A- Rbo . 

For Y, Y'  E (TY)bo, let pt(Y, YP) be the smooth kernel associated to the operator 

exp(tH TY ) calculated with respect to dV(Ty)~ ° (Y'). 
Let qT~(X, x'), qf,T2(X, X') (x, x I E X)  be the smooth kernel associated to the 

operator exp(--C2,T2), f'(D1,T 2) = (1 -- 2C2,T2)exp(--C~,T ~) with respect to 

dvx(x') .  Using (7.21), and proceeding as in [B1, §5], we see that for x E Xbo, as 

e --+ O, 

(7.23) P3,¢,T((O, x), (0, x)) -+pl (0, O)qf,T2 (X, X) 
- -  2(HrY(Y)pl(r, r'))lr=Y,=0qT' (x, x). 

If R E A(T*V)Q~d(TY), then there exist R l~lq e A(T*V) such that  

(7.24) R = ~ R~"~q~(f.)  .. .~(:~). 
l~ll <...<lq <mo 

We denote 

(7.25) {R}c_  R 1 ..... mo. 
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By [BeGeV, §4.2], we get 

T Y  2 
' )exp(-t  y ) {pt(0,0)}c= 

t smn(rn /z) - 
m0(m0+l) 

(7.26) = 2 -m° (-1)  2 e(TY, vTY), 

0 {(HTY(y)pl(y,  Y t ) ) l y = y , = o }  c = --~-~{pt(O, O)}lt= 1 ---- O. 

By (4.18), (7.20), (7.21), (7.23) and (7.26), we get that, as ~ -+ 0, 

 _15 1 (7.27) lim c 2Tr~ *T/~  (*r/~)f'(D3,~,r/~) 
~-~0 

_ 1 dimX)I'(D~,T~)]. 
- r f~(TY'VT~)~Tr~[ (2Nx- 

To finish the proof of Theorem 4.6, we must calculate Trs[ff(D1,T~)]. At first, 

as in [BLo, (3.74)], 

(7.28) o O~ Trs[f' (Pl'T2 )] = O. 

By using local index theory as in [BLo, p. 334], we get 

f 
(7.29) lim ~Trs[f'(D1T2)] = / 

T-+0 Jx 

By [BLo, Proposition 1.3], 

(7.30) Tr[(1 - 2Rr'")exp(--RF'u)] = rk(F). 

So, for T > 0, 

(7.31) Tr~[f'(Da,T~)] = rk(F)x(X).  

By (7.27) and (7.31), the proof of Theorem 4.6 is completed. 

e(TX, V TX) Tr[(1 - 2RF'U)exp(--RF'~')]. 

8. P r o o f  of  T h e o r e m  4.8 

This Section is organized as follows. In Section 8.1, we state a result from which 

Theorem 4.8 immediately follows. In Section 8.2, using finite propagation speed, 

we show that the proof of our main result is local on Ys. In Section 8.3, we prove 

our main result. 

Here, we use the assumptions and notation in Sections 4.2 and 7. 
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8.1. A REFORMULATION OF THEOREM 4.8. 

THEOREM 8.1: There exists C > 0 such that for 0 < u <_ 1, T >_ 1, 

(8.1) [Trs [*T 1 ~(*T)ft(D3,u2/T2T)]--2/; ~¢T(TZ)f(~F hF)l <- C_.~T 

Remark 8.1: Theorem 8.1 implies Theorem 4.8. In fact, for 0 < e _< 1, ~ < T < 1 

we use (8.1), with u = T and T replaced by T/¢, then we find tha t  the r ight-hand 

side of (8.1) is domina ted  by Cs.  So we have proved (4.31). 

8.2. LOCALIZATION OF THE PROBLEM. Let r > 0 such tha t  

r < inf{injective radius of the fiber (Ys, gTY)}. sES 
Let a el0, r/4]. For b E V, let B Y (b, a) be the open ball of center b and radius 

OL 

Let f l  be a smooth  even function defined on R with values in [0, 1], such tha t  

f : ( t )  =1  for it I < a/2, 
(8.2) 

0 for Itl > a.  

Set 

(8.3) 

Definition 8.1: 

(8.4) 

gl(t) = 1 - f l ( t ) .  

For u E]0, 1], a E C,  set 

F~(a) = (1 - 2a2)exp(ita~)exp(-t2/2)f:(ut) v ' ~ '  

/_~ -~ dt 
G~(a) = (1 - 2a2)exp(itav/2)exp(-t2/2)gl(ut) ~-~ .  

O 0  

Clearly 

(8.5) Fu(a) + Gu(a) = (1 - 2a2)exp(-a2). 

The functions Fu(a),Gu(a) are even holomorphic functions. 

holomorphic functions Fu(a), Gu (a) such tha t  

(8.6) Fu(a) = Fu(a2), Gu(a) = Gu(a2). 

So there exist 

The  restrictions of Fu, Gu, Fu, Gu to  R lie in the Schwartz space S (R) .  
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PROPOSITION 8.1:  There exist c > O, C > 0 such that for 0 < u < 1, T > 1, 

O*T - 2 _ Cexp( T2 
< . 

Proof'. By using (8.4), and proceeding as in the proof of [Mal, Proposition 8.4], 

we get (8.7). II 

By Proposition 8.1, and the argument in Section 7.2, the proof of (8.1) can be 

localized on Y~. 

For b0 E ]:~, we replace Z~ by R "~° × Xbo as in Section 7.2. We also trivialize 

the fibres as in Section 7.2. Then we will prove (8.1) in this situation. 

8.3. PROOF OF THEOREM 8.1. For n E N, we denote [n/2] C Z such that 

In/2] e]n/2 - 1, n/2]. Let {n/2} = n/2 - [n/2]. 

By (1.26), (4.18) and (5.35), 

(8.8) ~Tr~ [,~I ~ T  f'(D3,u,-/T2 T)] = ~,u~ Tr~ [ l  (2Nx-dimX)g(u2L°  ~3) ] . 

By (7.21), (8.8), and standard results on heat kernels, we know that  there 

exist C > 0, and some C ~ forms aT,j (j 7_ --n, n = dim Z) on S, which depend 
continuously on T C [1, + ~ ] ,  such that for u E]0, 1], T E [1, +oz[, 

0*7 ~ o 1 C u 
(8.9) Tr~ [.Tr 1 ~ - f  (D3,~2/T2,T)]- E TaT,J u2j-2{n/2} <- T" 

j= - - [n /2 ]  

THEOREM 8.2: For T ~ 1 fixed, when u --~ O, we get 

(8.10) 

Wrs [*T 1/)*T ' ~  ~: f (D3,u2 T ) ] {  2 f z ~ T ( T Z ) f ( V F ' h F ) + O ( u 2 ) ' K d i m Z i s e v e n ' =  O(u), i fd im Z is odd. 

Proof'. We use the same notation as in Section 1.1 and (4.26)-(4.28). Clearly, 
(p'F, p,~,F) is a flat vector bundle on W. 

Using the product structure on W, we can write 

(8.11) d ~ = d  w +dT  , (d~Z) *=(dw)~c+dT +*T :~- )"  

Defining C3,u, b3,u as in (1.11) with respect to (~3,gWZ), we have 

C9~, T 
(8.12) D3,u = T-NzD3,u,w TNz + dT ~<T 1 0 T  " 

We deduce that 

(8.13) ~ '  OST ! 
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By Theorem 1.1, comparing the dT term of (8.13), we get Theorem 8.2. 

Compare (8.9) and (8.10); we know 

(8.14) aT,j = 0 if j < 0, 

1 
2 f   (TZ)f(V hF). 

~ a T , o  = d z 

By (8.9) and (8.14), we get (8.1). | 

Isr. J. Math .  

| 

9. P r o o f  o f  T h e o r e m  4.9 

We use the same notation as in Section 8.1. 

PROPOSITION 9.1: There exists C > 0 such that for 0 < ~ <_ 1, T >_ 1, 

(9.1) ~ Tr~[(2Nx - dimX)5~(C~,~,T/~)] - V Trs[(2Nx - dimX)G¢(C2,~2)] 

C 

Proof: By using Theorem 5.3, the proof is essentially as same as in [Mal, 

Proposition 9.1]. | 

Using (8.5) and (9.1), it is clear that to establish Theorem 4.9, we only need 

to establish the following result, 

THEOREM 9.1: I ra  > 0 is small enough, there exist ~ > O,C > O, such that for 
O < e _ I , T _ > I ,  

(0.2) 
V Trs [(2Nx - dim X)F~ (C2,d ,w/~)]--~ Tr~ [(2Nx - dim X)F~ (C22,~2)1 

C -< 

By (5.10), 

(9.3) ~Trs[(2Nx - dimX)F~(C2,~2,T/~)] = ~ Trs[(2Nx - dimX)F~(A~,w/~)]. 

Let Fe(A2,T/e)(x,x ') (x,x '  E Zs) be the smooth kernel associated to the 
2 operator F¢(A~,T/~) with respect to dvz(x').  Using finite propagation speed 

of solutions of hyperbolic equations [CP, §7.8], [T, §4.4], we know the proof of 

(9.2) is local on Y. As in [BerB, §8b)], there is also a smooth Z-graded vector 

bundle K C ~2bo = C~(Xbo, A(T*X) ® F) over (TY)bo ~-- R m° which coincides 
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with K e r D  X on BY(0,2ao) (0 < a0 < a), with KerDbXo over TY\BY(O, 3ao), 
and such that if K ± is the orthogonal bundle to K in ~bo, 

(9.4) K ± n Ker D~o -- {0}. 

Let Py  (Y E R m°) be the orthogonal projection operator from ~bo on K y .  Set 

P~  = 1 -  Py.  

Let g,: R --+ [0, 11 be a smooth function such that  

~,(t) =1 for It[ < ao, 
(9.5) 

=0 for It] > 2ao. 

Let A TY be the standard Laplacian on (TY)bo with respect to the metric 

hTYIbo. Let Hbo be the vector space of smooth sections of 

7r~ Or~ ( A( T* S) )~A( T*Y) )bo ~( A(T* X) ® F)lxb o 

over (TY)bo × Xbo. Let L~, w be the operator 

(9.~) r~,v = ¢~(lYl)A~,v/~ + (1 - ¢ ~ ( I Y I ) ) (  - ~ 2z~vY + T  P~Pbo P~]. 

Recall that the operation F~ is defined in (7.16), 

(9.7) L2,T = FZIL~,TF¢. 

Let Op be the set of differential operators acting on smooth sections of 

(A(T*X) ® F)xbo over R m° × Xbo. Then we find that 

L~, T C ~r~(A(T*S))Q End(A(T*Y))boQOp. 

3 Let L~, T be obtained from L~, T by replacing the Clifford variables c(fj) 
(1 _< j ~ too) by the operators c¢(fj) as in Section 7. 

Let 5.(T'Y) be another copy of A(T*Y), and 5(U) (U E TY) acts on it. Let 

E ° be the vector space of square integrable sections of 

~r~(A(T*S))~)A(T*Y)QA(T*Y)~A(T*X) ® F 

over (TY)bo × Xbo. Let F ° be the vector space of square integrable sections of 

7r~ (A(T*S) )QA(T*Y)~A(T*Y)QST~* K 

over (TY)bo. Then F ° is a Hilbert subspace of E °. Let F °'± be its orthogonal 

complement in E °. Let p~ be the orthogonal projection operator from E ° on F°; 

s e t p ~ = l - p c .  Then if s E E  °, 

(9.8) pss(Y) = P~usO:;.) for Y • (TY)bo. 
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Put  

(9.9) 
3 Ee,T = peLe,Tpe, 

_l_ 3 
G~,T = Pe Le,TPe, 

Fe,T 3 i = peL~,Tp e , 
± T3 _l_ 

H~,T = Pe l~e,TPe " 

Then we write L3,T in matrix form with respect to the splitting E ° = leo c~ leo,z - - e  ~ h e  ' 

(9.10) L 'T = [ Ge,T, He,T J " 

By using (7.9), we have 

THEOREM 9.2: There exist  operators Ee, F~, Gs, He such that  as T --~ +oo, 

(9.11) 
Ee,T = Ee + O ( 1 / T ) ,  

Ge,T = TGe + O(1), 

F~,v = TFe + O(1), 

He,v = T2He + O(T). 

Let  Q~ be the operator obtained from ½¢2(Y)[DX,C]  by proceeding as before, 

i.e., by rescaling the coordinate Y and the Clifford variables c(f l ) .  Then Q~ is 
o,± the first order elliptic operator along the fibres X ,  and Qe(F °) C F e , and 

F~ peQ~p~, Ge ± = = P~ Q~pe, 
(9.12) 2 x,2 _l_ He : ~P~ (~'(elYI)DXI) 2 + (1 - ~ ( e lYI ) )Pbo)Pc"  

We can now apply the techniques and results of [Mal, §9] to complete the 

proof of Theorem 9.1. In fact, (8.4) allows us to localize the problem on Ys as in 

Section 7. 

It is easy to see that the last terms of (7.9) don't  cause any trouble in modifying 

the estimates in [Mal, §9], so that all the arguments can actually go through here. 

By proceeding in exactly the same way as in [Mal, §9], we get Theorem 9.1. II 

[ABoP] 

[BeGeV] 

[BerB] 
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